

Think Python
Second Edition
Allen B. Downey

Think Python

by Allen B. Downey
Copyright © 2016 Allen Downey. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Nan Reinhardt
Proofreader: Amanda Kersey
Indexer: Allen Downey
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
August 2012: First Edition
December 2015: Second Edition

Revision History for the Second Edition

2015-11-20: First Release
See http://oreilly.com/catalog/errata.csp?
isbn=9781491939369 for release details.
The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Think Python, the cover image of a Carolina
parrot, and related trade dress are trademarks of O’Reilly
Media, Inc.

http://safaribooksonline.com/
http://oreilly.com/catalog/errata.csp?isbn=9781491939369

While the publisher and the author have used good faith
efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of
the information and instructions contained in this work is
at your own risk. If any code samples or other technology
this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is
your responsibility to ensure that your use thereof complies
with such licenses and/or rights.
Think Python is available under the Creative Commons
Attribution-NonCommercial 3.0 Unported License.
The
author maintains an online version at
http://greenteapress.com/thinkpython2/.
978-1-491-93936-9
[LSI]

http://greenteapress.com/thinkpython2/

Preface

The Strange History of This Book

In January 1999 I was preparing to teach an introductory
programming class in Java. I had taught it three times and I
was getting frustrated. The failure rate in the class was too
high and, even for students who succeeded, the overall
level of achievement was too low.
One of the problems I saw was the books. They were too
big, with too much unnecessary detail about Java, and not
enough high-level guidance about how to program. And
they all suffered from the trapdoor effect: they would start
out easy, proceed gradually, and then somewhere around
Chapter 5 the bottom would fall out. The students would
get too much new material, too fast, and I would spend the
rest of the semester picking up the pieces.
Two weeks before the first day of classes, I decided to write
my own book. My goals were:

Keep it short. It is better for students to read 10 pages
than not read 50 pages.
Be careful with vocabulary. I tried to minimize jargon
and define each term at first use.
Build gradually. To avoid trapdoors, I took the most
difficult topics and split them into a series of small steps.
Focus on programming, not the programming language.
I included the minimum useful subset of Java and left out
the rest.

I needed a title, so on a whim I chose How to Think Like a

Computer Scientist.

My first version was rough, but it worked. Students did the
reading, and they understood enough that I could spend
class time on the hard topics, the interesting topics and
(most important) letting the students practice.
I released the book under the GNU Free Documentation
License, which allows users to copy, modify, and distribute
the book.
What happened next is the cool part. Jeff Elkner, a high
school teacher in Virginia, adopted my book and translated
it into Python. He sent me a copy of his translation, and I
had the unusual experience of learning Python by reading
my own book. As Green Tea Press, I published the first
Python version in 2001.
In 2003 I started teaching at Olin College and I got to teach
Python for the first time. The contrast with Java was
striking. Students struggled less, learned more, worked on
more interesting projects, and generally had a lot more fun.
Since then I’ve continued to develop the book, correcting
errors, improving some of the examples and adding
material, especially exercises.
The result is this book, now with the less grandiose title
Think Python. Some of the changes are:

I added a section about debugging at the end of each
chapter. These sections present general techniques for
finding and avoiding bugs, and warnings about Python
pitfalls.
I added more exercises, ranging from short tests of
understanding to a few substantial projects. Most
exercises include a link to my solution.
I added a series of case studies—longer examples with
exercises, solutions, and discussion.

I expanded the discussion of program development plans
and basic design patterns.
I added appendices about debugging and analysis of
algorithms.

The second edition of Think Python has these new features:
The book and all supporting code have been updated to
Python 3.
I added a few sections, and more details on the Web, to
help beginners get started running Python in a browser,
so you don’t have to deal with installing Python until you
want to.
For “The turtle Module” I switched from my own turtle
graphics package, called Swampy, to a more standard
Python module, turtle, which is easier to install and
more powerful.
I added a new chapter called “The Goodies”, which
introduces some additional Python features that are not
strictly necessary, but sometimes handy.

I hope you enjoy working with this book, and that it helps
you learn to program and think like a computer scientist, at
least a little bit.

—Allen B. Downey
Olin College

Conventions Used in This Book

The following typographical conventions are used in this
book:
Italic

Indicates new terms, URLs, email addresses, filenames,
and
file extensions.

Bold

Indicates terms defined in the Glossary.

Constant width

Used for program listings, as well as within paragraphs
to
refer to program elements such as variable or
function names,
databases, data types, environment
variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed
literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied
values
or by values determined by context.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available
for download at
http://www.greenteapress.com/thinkpython2/code.
This book is here to help you get your job done. In general,
if
example code is offered with this book, you may use it in
your programs
and documentation. You do not need to
contact us for permission unless
you’re reproducing a
significant portion of the code. For example, writing
a
program that uses several chunks of code from this book
does not require
permission. Selling or distributing a CD-
ROM of examples from O’Reilly
books does require
permission. Answering a question by citing this book
and
quoting example code does not require permission.
Incorporating a
significant amount of example code from

http://www.greenteapress.com/thinkpython2/code

this book into your product’s
documentation does require
permission.
We appreciate, but do not require, attribution. An
attribution
usually includes the title, author, publisher, and
ISBN. For example:
“Think Python, 2nd Edition, by Allen B.
Downey (O’Reilly). Copyright 2016
Allen Downey, 978-1-
4919-3936-9.”
If you feel your use of code examples falls outside fair use
or the
permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com)
is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in
technology and
business.
Technology professionals, software developers, web
designers, and
business and creative professionals use
Safari Books Online as their
primary resource for research,
problem solving, learning, and
certification training.
Safari Books Online offers a range of plans and pricing for
enterprise,
government, and education, and individuals.
Members have access to thousands of books, training
videos, and
prepublication manuscripts in one fully
searchable database from
publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley
Professional,
Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders,
McGraw-Hill, Jones &
Bartlett, Course Technology, and hundreds more. For more

mailto:permissions@oreilly.com
http://safaribooksonline.com/
http://www.safaribooksonline.com/explore/
http://www.safaribooksonline.com/pricing/
http://www.safaribooksonline.com/enterprise/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/academic-public-library/
http://www.safaribooksonline.com/our-library/

information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this
book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples,
and any additional information. You can access
this page at http://bit.ly/think-python_2E.
To comment or ask technical questions about this book,
send email to
bookquestions@oreilly.com.
For more information about our books, courses,
conferences, and
news, see our website at
http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube:
http://www.youtube.com/oreillymedia

Acknowledgments

Many thanks to Jeff Elkner, who translated my Java book
into Python, which got this project started and introduced

http://www.safaribooksonline.com/
http://bit.ly/think-python_2E
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

me to what has turned out to be my favorite language.
Thanks also to Chris Meyers, who contributed several
sections to How to Think Like a Computer Scientist.
Thanks to the Free Software Foundation for developing the
GNU Free Documentation License, which helped make my
collaboration with Jeff and Chris possible, and Creative
Commons for the license I am using now.
Thanks to the editors at Lulu who worked on How to Think

Like a Computer Scientist.
Thanks to the editors at O’Reilly Media who worked on
Think Python.
Thanks to all the students who worked with earlier versions
of this book and all the contributors (listed below) who sent
in corrections and suggestions.

Contributor List

More than 100 sharp-eyed and thoughtful readers have
sent in suggestions and corrections over the past few years.
Their contributions, and enthusiasm for this project, have
been a huge help.
If you have a suggestion or correction, please send email to
feedback@thinkpython.com. If I make a change based on
your feedback, I will add you to the contributor list (unless
you ask to be omitted).
If you include at least part of the sentence the error
appears in, that makes it easy for me to search. Page and
section numbers are fine, too, but not quite as easy to work
with. Thanks!

Lloyd Hugh Allen sent in a correction to Section 8.4.

Yvon Boulianne sent in a correction of a semantic error
in Chapter 5.
Fred Bremmer submitted a correction in Section 2.1.
Jonah Cohen wrote the Perl scripts to convert the LaTeX
source for this book into beautiful HTML.
Michael Conlon sent in a grammar correction in Chapter
2 and an improvement in style in Chapter 1, and he
initiated discussion on the technical aspects of
interpreters.
Benoit Girard sent in a correction to a humorous mistake
in Section 5.6.
Courtney Gleason and Katherine Smith wrote
horsebet.py, which was used as a case study in an earlier
version of the book. Their program can now be found on
the website.
Lee Harr submitted more corrections than we have room
to list here, and indeed he should be listed as one of the
principal editors of the text.
James Kaylin is a student using the text. He has
submitted numerous corrections.
David Kershaw fixed the broken catTwice function in
Section 3.10.
Eddie Lam has sent in numerous corrections to Chapters
1, 2, and 3. He also fixed the Makefile so that it creates
an index the first time it is run and helped us set up a
versioning scheme.
Man-Yong Lee sent in a correction to the example code
in Section 2.4.
David Mayo pointed out that the word “unconsciously” in
Chapter 1 needed to be changed to “subconsciously”.

Chris McAloon sent in several corrections to Sections 3.9
and 3.10.
Matthew J. Moelter has been a long-time contributor who
sent in numerous corrections and suggestions to the
book.
Simon Dicon Montford reported a missing function
definition and several typos in Chapter 3. He also found
errors in the increment function in Chapter 13.
John Ouzts corrected the definition of “return value” in
Chapter 3.
Kevin Parks sent in valuable comments and suggestions
as to how to improve the distribution of the book.
David Pool sent in a typo in the glossary of Chapter 1, as
well as kind words of encouragement.
Michael Schmitt sent in a correction to the chapter on
files and exceptions.
Robin Shaw pointed out an error in Section 13.1, where
the printTime function was used in an example without
being defined.
Paul Sleigh found an error in Chapter 7 and a bug in
Jonah Cohen’s Perl script that generates HTML from
LaTeX.
Craig T. Snydal is testing the text in a course at Drew
University. He has contributed several valuable
suggestions and corrections.
Ian Thomas and his students are using the text in a
programming course. They are the first ones to test the
chapters in the latter half of the book, and they have
made numerous corrections and suggestions.
Keith Verheyden sent in a correction in Chapter 3.

Peter Winstanley let us know about a longstanding error
in our Latin in Chapter 3.
Chris Wrobel made corrections to the code in the
chapter on file I/O and exceptions.
Moshe Zadka has made invaluable contributions to this
project. In addition to writing the first draft of the
chapter on Dictionaries, he provided continual guidance
in the early stages of the book.
Christoph Zwerschke sent several corrections and
pedagogic suggestions, and explained the difference
between gleich and selbe.
James Mayer sent us a whole slew of spelling and
typographical errors, including two in the contributor
list.
Hayden McAfee caught a potentially confusing
inconsistency between two examples.
Angel Arnal is part of an international team of
translators working on the Spanish version of the text.
He has also found several errors in the English version.
Tauhidul Hoque and Lex Berezhny created the
illustrations in Chapter 1 and improved many of the
other illustrations.
Dr. Michele Alzetta caught an error in Chapter 8 and
sent some interesting pedagogic comments and
suggestions about Fibonacci and Old Maid.
Andy Mitchell caught a typo in Chapter 1 and a broken
example in Chapter 2.
Kalin Harvey suggested a clarification in Chapter 7 and
caught some typos.
Christopher P. Smith caught several typos and helped us
update the book for Python 2.2.

David Hutchins caught a typo in the Foreword.
Gregor Lingl is teaching Python at a high school in
Vienna, Austria. He is working on a German translation
of the book, and he caught a couple of bad errors in
Chapter 5.
Julie Peters caught a typo in the Preface.
Florin Oprina sent in an improvement in makeTime, a
correction in printTime, and a nice typo.
D. J. Webre suggested a clarification in Chapter 3.
Ken found a fistful of errors in Chapters 8, 9 and 11.
Ivo Wever caught a typo in Chapter 5 and suggested a
clarification in Chapter 3.
Curtis Yanko suggested a clarification in Chapter 2.
Ben Logan sent in a number of typos and problems with
translating the book into HTML.
Jason Armstrong saw the missing word in Chapter 2.
Louis Cordier noticed a spot in Chapter 16 where the
code didn’t match the text.
Brian Cain suggested several clarifications in Chapters 2
and 3.
Rob Black sent in a passel of corrections, including some
changes for Python 2.2.
Jean-Philippe Rey at Ecole Centrale Paris sent a number
of patches, including some updates for Python 2.2 and
other thoughtful improvements.
Jason Mader at George Washington University made a
number of useful suggestions and corrections.
Jan Gundtofte-Bruun reminded us that “a error” is an
error.

Abel David and Alexis Dinno reminded us that the plural
of “matrix” is “matrices”, not “matrixes”. This error was
in the book for years, but two readers with the same
initials reported it on the same day. Weird.
Charles Thayer encouraged us to get rid of the
semicolons we had put at the ends of some statements
and to clean up our use of “argument” and “parameter”.
Roger Sperberg pointed out a twisted piece of logic in
Chapter 3.
Sam Bull pointed out a confusing paragraph in Chapter
2.
Andrew Cheung pointed out two instances of “use before
def”.
C. Corey Capel spotted a missing word and a typo in
Chapter 4.
Alessandra helped clear up some Turtle confusion.
Wim Champagne found a braino in a dictionary example.
Douglas Wright pointed out a problem with floor division
in arc.
Jared Spindor found some jetsam at the end of a
sentence.
Lin Peiheng sent a number of very helpful suggestions.
Ray Hagtvedt sent in two errors and a not-quite-error.
Torsten Hübsch pointed out an inconsistency in Swampy.
Inga Petuhhov corrected an example in Chapter 14.
Arne Babenhauserheide sent several helpful corrections.
Mark E. Casida is is good at spotting repeated words.
Scott Tyler filled in a that was missing. And then sent in
a heap of corrections.

Gordon Shephard sent in several corrections, all in
separate emails.
Andrew Turner spotted an error in Chapter 8.
Adam Hobart fixed a problem with floor division in arc.
Daryl Hammond and Sarah Zimmerman pointed out that
I served up math.pi too early. And Zim spotted a typo.
George Sass found a bug in a Debugging section.
Brian Bingham suggested Exercise 11-5.
Leah Engelbert-Fenton pointed out that I used tuple as a
variable name, contrary to my own advice. And then
found a bunch of typos and a “use before def”.
Joe Funke spotted a typo.
Chao-chao Chen found an inconsistency in the Fibonacci
example.
Jeff Paine knows the difference between space and spam.
Lubos Pintes sent in a typo.
Gregg Lind and Abigail Heithoff suggested Exercise 14-
3.
Max Hailperin has sent in a number of corrections and
suggestions. Max is one of the authors of the
extraordinary Concrete Abstractions (Course
Technology, 1998), which you might want to read when
you are done with this book.
Chotipat Pornavalai found an error in an error message.
Stanislaw Antol sent a list of very helpful suggestions.
Eric Pashman sent a number of corrections for Chapters
4–11.
Miguel Azevedo found some typos.

Jianhua Liu sent in a long list of corrections.
Nick King found a missing word.
Martin Zuther sent a long list of suggestions.
Adam Zimmerman found an inconsistency in my instance
of an “instance” and several other errors.
Ratnakar Tiwari suggested a footnote explaining
degenerate triangles.
Anurag Goel suggested another solution for
is_abecedarian and sent some additional corrections. And
he knows how to spell Jane Austen.
Kelli Kratzer spotted one of the typos.
Mark Griffiths pointed out a confusing example in
Chapter 3.
Roydan Ongie found an error in my Newton’s method.
Patryk Wolowiec helped me with a problem in the HTML
version.
Mark Chonofsky told me about a new keyword in Python
3.
Russell Coleman helped me with my geometry.
Wei Huang spotted several typographical errors.
Karen Barber spotted the the oldest typo in the book.
Nam Nguyen found a typo and pointed out that I used
the Decorator pattern but didn’t mention it by name.
Stéphane Morin sent in several corrections and
suggestions.
Paul Stoop corrected a typo in uses_only.
Eric Bronner pointed out a confusion in the discussion of
the order of operations.

Alexandros Gezerlis set a new standard for the number
and quality of suggestions he submitted. We are deeply
grateful!
Gray Thomas knows his right from his left.
Giovanni Escobar Sosa sent a long list of corrections and
suggestions.
Alix Etienne fixed one of the URLs.
Kuang He found a typo.
Daniel Neilson corrected an error about the order of
operations.
Will McGinnis pointed out that polyline was defined
differently in two places.
Swarup Sahoo spotted a missing semicolon.
Frank Hecker pointed out an exercise that was under-
specified, and some broken links.
Animesh B helped me clean up a confusing example.
Martin Caspersen found two round-off errors.
Gregor Ulm sent several corrections and suggestions.
Dimitrios Tsirigkas suggested I clarify an exercise.
Carlos Tafur sent a page of corrections and suggestions.
Martin Nordsletten found a bug in an exercise solution.
Lars O.D. Christensen found a broken reference.
Victor Simeone found a typo.
Sven Hoexter pointed out that a variable named input
shadows a build-in function.
Viet Le found a typo.
Stephen Gregory pointed out the problem with cmp in
Python 3.

Matthew Shultz let me know about a broken link.
Lokesh Kumar Makani let me know about some broken
links and some changes in error messages.
Ishwar Bhat corrected my statement of Fermat’s last
theorem.
Brian McGhie suggested a clarification.
Andrea Zanella translated the book into Italian, and sent
a number of corrections along the way.
Many, many thanks to Melissa Lewis and Luciano
Ramalho for excellent comments and suggestions on the
second edition.
Thanks to Harry Percival from PythonAnywhere for his
help getting people started running Python in a browser.
Xavier Van Aubel made several useful corrections in the
second edition.

Chapter 1. The Way of the

Program

The goal of this book is to teach you to think like a
computer scientist. This way of thinking combines some of
the best features of mathematics, engineering, and natural
science. Like mathematicians, computer scientists use
formal languages to denote ideas (specifically
computations). Like engineers, they design things,
assembling components into systems and evaluating
tradeoffs among alternatives. Like scientists, they observe
the behavior of complex systems, form hypotheses, and test
predictions.
The single most important skill for a computer scientist is
problem solving. Problem solving means the ability to
formulate problems, think creatively about solutions, and
express a solution clearly and accurately. As it turns out,
the process of learning to program is an excellent
opportunity to practice problem-solving skills. That’s why
this chapter is called “The Way of the Program”.
On one level, you will be learning to program, a useful skill
by itself. On another level, you will use programming as a
means to an end. As we go along, that end will become
clearer.

What Is a Program?

A program is a sequence of instructions that specifies how
to perform a computation. The computation might be
something mathematical, such as solving a system of

equations or finding the roots of a polynomial, but it can
also be a symbolic computation, such as searching and
replacing text in a document or something graphical, like
processing an image or playing a video.
The details look different in different languages, but a few
basic instructions appear in just about every language:
input:

Get data from the keyboard, a file, the network, or some
other device.

output:
Display data on the screen, save it in a file, send it over
the network, etc.

math:
Perform basic mathematical operations like addition and
multiplication.

conditional execution:
Check for certain conditions and run the appropriate
code.

repetition:
Perform some action repeatedly, usually with some
variation.

Believe it or not, that’s pretty much all there is to it. Every
program you’ve ever used, no matter how complicated, is
made up of instructions that look pretty much like these. So
you can think of programming as the process of breaking a
large, complex task into smaller and smaller subtasks until
the subtasks are simple enough to be performed with one
of these basic instructions.

Running Python

One of the challenges of getting started with Python is that
you might have to install Python and related software on
your computer. If you are familiar with your operating
system, and especially if you are comfortable with the
command-line interface, you will have no trouble installing
Python. But for beginners, it can be painful to learn about
system administration and programming at the same time.
To avoid that problem, I recommend that you start out
running Python in a browser. Later, when you are
comfortable with Python, I’ll make suggestions for
installing Python on your computer.
There are a number of web pages you can use to run
Python. If you already have a favorite, go ahead and use it.
Otherwise I recommend PythonAnywhere. I provide
detailed instructions for getting started at
http://tinyurl.com/thinkpython2e.
There are two versions of Python, called Python 2 and
Python 3. They are very similar, so if you learn one, it is
easy to switch to the other. In fact, there are only a few
differences you will encounter as a beginner. This book is
written for Python 3, but I include some notes about Python
2.
The Python interpreter is a program that reads and
executes Python code. Depending on your environment, you
might start the interpreter by clicking on an icon, or by
typing python on a command line. When it starts, you should
see output like this:

Python 3.4.0 (default, Jun 19 2015, 14:20:21)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

http://tinyurl.com/thinkpython2e

The first three lines contain information about the
interpreter and the operating system it’s running on, so it
might be different for you. But you should check that the
version number, which is 3.4.0 in this example, begins with
3, which indicates that you are running Python 3. If it
begins with 2, you are running (you guessed it) Python 2.
The last line is a prompt that indicates that the interpreter
is ready for you to enter code. If you type a line of code and
hit Enter, the interpreter displays the result:

>>> 1 + 1

2

Now you’re ready to get started. From here on, I assume
that you know how to start the Python interpreter and run
code.

The First Program

Traditionally, the first program you write in a new language
is called “Hello, World!” because all it does is display the
words “Hello, World!” In Python, it looks like this:

>>> print('Hello, World!')

This is an example of a print statement, although it
doesn’t actually print anything on paper. It displays a result
on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning
and end of the text to be displayed; they don’t appear in the
result.

The parentheses indicate that print is a function. We’ll get
to functions in Chapter 3.
In Python 2, the print statement is slightly different; it is
not a function, so it doesn’t use parentheses.

>>> print 'Hello, World!'

This distinction will make more sense soon, but that’s
enough to get started.

Arithmetic Operators

After “Hello, World”, the next step is arithmetic. Python
provides operators, which are special symbols that
represent computations like addition and multiplication.
The operators +, -, and * perform addition, subtraction, and
multiplication, as in the following examples:

>>> 40 + 2

42

>>> 43 - 1

42

>>> 6 * 7

42

The operator / performs division:

>>> 84 / 2

42.0

You might wonder why the result is 42.0 instead of 42. I’ll
explain in the next section.
Finally, the operator ** performs exponentiation; that is, it
raises a number to a power:

>>> 6**2 + 6

42

In some other languages, ^ is used for exponentiation, but
in Python it is a bitwise operator called XOR. If you are not
familiar with bitwise operators, the result will surprise you:

>>> 6 ^ 2

4

I won’t cover bitwise operators in this book, but you can
read about them at
http://wiki.python.org/moin/BitwiseOperators.

Values and Types

A value is one of the basic things a program works with,
like a letter or a number. Some values we have seen so far
are 2, 42.0, and 'Hello, World!'
These values belong to different types: 2 is an integer, 42.0
is a floating-point number, and 'Hello, World!' is a
string, so-called because the letters it contains are strung
together.
If you are not sure what type a value has, the interpreter
can tell you:

>>> type(2)

<class 'int'>

>>> type(42.0)

<class 'float'>

>>> type('Hello, World!')

<class 'str'>

In these results, the word “class” is used in the sense of a
category; a type is a category of values.

http://wiki.python.org/moin/BitwiseOperators

Not surprisingly, integers belong to the type int, strings
belong to str, and floating-point numbers belong to float.
What about values like '2' and '42.0'? They look like
numbers, but they are in quotation marks like strings:

>>> type('2')

<class 'str'>

>>> type('42.0')

<class 'str'>

They’re strings.
When you type a large integer, you might be tempted to
use commas between groups of digits, as in 1,000,000. This
is not a legal integer in Python, but it is legal:

>>> 1,000,000

(1, 0, 0)

That’s not what we expected at all! Python interprets
1,000,000 as a comma-separated sequence of integers. We’ll
learn more about this kind of sequence later.

Formal and Natural Languages

Natural languages are the languages people speak, such
as English, Spanish, and French. They were not designed
by people (although people try to impose some order on
them); they evolved naturally.
Formal languages are languages that are designed by
people for specific applications. For example, the notation
that mathematicians use is a formal language that is
particularly good at denoting relationships among numbers
and symbols. Chemists use a formal language to represent
the chemical structure of molecules. And most importantly:

Programming languages are formal languages that

have been designed to express computations.

Formal languages tend to have strict syntax rules that
govern the structure of statements. For example, in
mathematics the statement has correct syntax,
but does not. In chemistry H2O is a
syntactically correct formula, but 2Zz is not.
Syntax rules come in two flavors, pertaining to tokens and
structure. Tokens are the basic elements of the language,
such as words, numbers, and chemical elements. One of the
problems with is that is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not
legal because there is no element with the abbreviation Zz.
The second type of syntax rule pertains to the way tokens
are combined. The equation is illegal because
even though + and = are legal tokens, you can’t have one
right after the other. Similarly, in a chemical formula the
subscript comes after the element name, not before.
This is @ well-structured Engli$h sentence with invalid
t*kens in it. This sentence all valid tokens has, but invalid
structure with.
When you read a sentence in English or a statement in a
formal language, you have to figure out the structure
(although in a natural language you do this
subconsciously). This process is called parsing.
Although formal and natural languages have many features
in common—tokens, structure, and syntax—there are some
differences:
ambiguity:

Natural languages are full of ambiguity, which people
deal with by using contextual clues and other
information. Formal languages are designed to be nearly
or completely unambiguous, which means that any
statement has exactly one meaning, regardless of
context.

redundancy:
In order to make up for ambiguity and reduce
misunderstandings, natural languages employ lots of
redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

literalness:
Natural languages are full of idiom and metaphor. If I
say, “The penny dropped”, there is probably no penny
and nothing dropping (this idiom means that someone
understood something after a period of confusion).
Formal languages mean exactly what they say.

Because we all grow up speaking natural languages, it is
sometimes hard to adjust to formal languages. The
difference between formal and natural language is like the
difference between poetry and prose, but more so:
Poetry:

Words are used for their sounds as well as for their
meaning, and the whole poem together creates an effect
or emotional response. Ambiguity is not only common
but often deliberate.

Prose:
The literal meaning of words is more important, and the
structure contributes more meaning. Prose is more

amenable to analysis than poetry but still often
ambiguous.

Programs:
The meaning of a computer program is unambiguous
and literal, and can be understood entirely by analysis of
the tokens and structure.

Formal languages are more dense than natural languages,
so it takes longer to read them. Also, the structure is
important, so it is not always best to read from top to
bottom, left to right. Instead, learn to parse the program in
your head, identifying the tokens and interpreting the
structure. Finally, the details matter. Small errors in
spelling and punctuation, which you can get away with in
natural languages, can make a big difference in a formal
language.

Debugging

Programmers make mistakes. For whimsical reasons,
programming errors are called bugs and the process of
tracking them down is called debugging.
Programming, and especially debugging, sometimes brings
out strong emotions. If you are struggling with a difficult
bug, you might feel angry, despondent, or embarrassed.
There is evidence that people naturally respond to
computers as if they were people. When they work well, we
think of them as teammates, and when they are obstinate
or rude, we respond to them the same way we respond to
rude, obstinate people (Reeves and Nass, The Media

Equation: How People Treat Computers, Television, and

New Media Like Real People and Places).

Preparing for these reactions might help you deal with
them. One approach is to think of the computer as an
employee with certain strengths, like speed and precision,
and particular weaknesses, like lack of empathy and
inability to grasp the big picture.
Your job is to be a good manager: find ways to take
advantage of the strengths and mitigate the weaknesses.
And find ways to use your emotions to engage with the
problem, without letting your reactions interfere with your
ability to work effectively.
Learning to debug can be frustrating, but it is a valuable
skill that is useful for many activities beyond programming.
At the end of each chapter there is a section, like this one,
with my suggestions for debugging. I hope they help!

Glossary

problem solving:
The process of formulating a problem, finding a solution,
and expressing it.

high-level language:
A programming language like Python that is designed to
be easy for humans to read and write.

low-level language:
A programming language that is designed to be easy for
a computer to run; also called “machine language” or
“assembly language”.

portability:
A property of a program that can run on more than one
kind of computer.

interpreter:
A program that reads another program and executes it.

prompt:
Characters displayed by the interpreter to indicate that
it is ready to take input from the user.

program:
A set of instructions that specifies a computation.

print statement:
An instruction that causes the Python interpreter to
display a value on the screen.

operator:
A special symbol that represents a simple computation
like addition, multiplication, or string concatenation.

value:
One of the basic units of data, like a number or string,
that a program manipulates.

type:
A category of values. The types we have seen so far are
integers (type int), floating-point numbers (type float),
and strings (type str).

integer:
A type that represents whole numbers.

floating-point:
A type that represents numbers with fractional parts.

string:

A type that represents sequences of characters.

natural language:
Any one of the languages that people speak that evolved
naturally.

formal language:
Any one of the languages that people have designed for
specific purposes, such as representing mathematical
ideas or computer programs; all programming
languages are formal languages.

token:
One of the basic elements of the syntactic structure of a
program, analogous to a word in a natural language.

syntax:
The rules that govern the structure of a program.

parse:
To examine a program and analyze the syntactic
structure.

bug:
An error in a program.

debugging:
The process of finding and correcting bugs.

Exercises

Exercise 1-1.

It is a good idea to read this book in front of a computer so
you can try out the examples as you go.

Whenever you are experimenting with a new feature, you
should try to make mistakes. For example, in the “Hello,
world!” program, what happens if you leave out one of the
quotation marks? What if you leave out both? What if you
spell print wrong?
This kind of experiment helps you remember what you
read; it also helps when you are programming, because you
get to know what the error messages mean. It is better to
make mistakes now and on purpose than later and
accidentally.

1. In a print statement, what happens if you leave out one
of the parentheses, or both?

2. If you are trying to print a string, what happens if you
leave out one of the quotation marks, or both?

3. You can use a minus sign to make a negative number
like -2. What happens if you put a plus sign before a
number? What about 2++2?

4. In math notation, leading zeros are okay, as in 02. What
happens if you try this in Python?

5. What happens if you have two values with no operator
between them?

Exercise 1-2.

Start the Python interpreter and use it as a calculator.
1. How many seconds are there in 42 minutes 42

seconds?
2. How many miles are there in 10 kilometers? Hint:

there are 1.61 kilometers in a mile.
3. If you run a 10 kilometer race in 42 minutes 42

seconds, what is your average pace (time per mile in

minutes and seconds)? What is your average speed in
miles per hour?

Chapter 2. Variables,

Expressions and

Statements

One of the most powerful features of a programming
language is the ability to manipulate variables. A variable
is a name that refers to a value.

Assignment Statements

An assignment statement creates a new variable and
gives it a value:

>>> message = 'And now for something completely different'

>>> n = 17

>>> pi = 3.141592653589793

This example makes three assignments. The first assigns a
string to a new variable named message; the second gives
the integer 17 to n; the third assigns the (approximate)
value of π to pi.
A common way to represent variables on paper is to write
the name with an arrow pointing to its value. This kind of
figure is called a state diagram because it shows what
state each of the variables is in (think of it as the variable’s
state of mind). Figure 2-1 shows the result of the previous
example.

Figure 2-1. State diagram.

Variable Names

Programmers generally choose names for their variables
that are meaningful—they document what the variable is
used for.
Variable names can be as long as you like. They can contain
both letters and numbers, but they can’t begin with a
number. It is legal to use uppercase letters, but it is
conventional to use only lowercase for variables names.
The underscore character, _, can appear in a name. It is
often used in names with multiple words, such as your_name
or airspeed_of_unladen_swallow.
If you give a variable an illegal name, you get a syntax
error:

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'

SyntaxError: invalid syntax

76trombones is illegal because it begins with a number. more@
is illegal because it contains an illegal character, @. But
what’s wrong with class?

It turns out that class is one of Python’s keywords. The
interpreter uses keywords to recognize the structure of the
program, and they cannot be used as variable names.
Python 3 has these keywords:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

You don’t have to memorize this list. In most development
environments, keywords are displayed in a different color;
if you try to use one as a variable name, you’ll know.

Expressions and Statements

An expression is a combination of values, variables, and
operators. A value all by itself is considered an expression,
and so is a variable, so the following are all legal
expressions:

>>> 42

42

>>> n

17

>>> n + 25

42

When you type an expression at the prompt, the interpreter
evaluates it, which means that it finds the value of the
expression. In this example, n has the value 17 and n + 25
has the value 42.

A statement is a unit of code that has an effect, like
creating a variable or displaying a value.

>>> n = 17

>>> print(n)

The first line is an assignment statement that gives a value
to n. The second line is a print statement that displays the
value of n.
When you type a statement, the interpreter executes it,
which means that it does whatever the statement says. In
general, statements don’t have values.

Script Mode

So far we have run Python in interactive mode, which
means that you interact directly with the interpreter.
Interactive mode is a good way to get started, but if you are
working with more than a few lines of code, it can be
clumsy.
The alternative is to save code in a file called a script and
then run the interpreter in script mode to execute the
script. By convention, Python scripts have names that end
with .py.
If you know how to create and run a script on your
computer, you are ready to go. Otherwise I recommend
using PythonAnywhere again. I have posted instructions for
running in script mode at http://tinyurl.com/thinkpython2e.
Because Python provides both modes, you can test bits of
code in interactive mode before you put them in a script.
But there are differences between interactive mode and
script mode that can be confusing.

http://tinyurl.com/thinkpython2e

For example, if you are using Python as a calculator, you
might type:

>>> miles = 26.2

>>> miles * 1.61

42.182

The first line assigns a value to miles, but it has no visible
effect. The second line is an expression, so the interpreter
evaluates it and displays the result. It turns out that a
marathon is about 42 kilometers.
But if you type the same code into a script and run it, you
get no output at all. In script mode an expression, all by
itself, has no visible effect. Python actually evaluates the
expression, but it doesn’t display the value unless you tell it
to:

miles = 26.2

print(miles * 1.61)

This behavior can be confusing at first.
A script usually contains a sequence of statements. If there
is more than one statement, the results appear one at a
time as the statements execute.
For example, the script

print(1)

x = 2

print(x)

produces the output

1

2

The assignment statement produces no output.

To check your understanding, type the following
statements in the Python interpreter and see what they do:

5

x = 5

x + 1

Now put the same statements in a script and run it. What is
the output? Modify the script by transforming each
expression into a print statement and then run it again.

Order of Operations

When an expression contains more than one operator, the
order of evaluation depends on the order of operations.
For mathematical operators, Python follows mathematical
convention. The acronym PEMDAS is a useful way to
remember the rules:

Parentheses have the highest precedence and can be
used to force an expression to evaluate in the order you
want. Since expressions in parentheses are evaluated
first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also
use parentheses to make an expression easier to read, as
in (minute * 100) / 60, even if it doesn’t change the
result.
Exponentiation has the next highest precedence, so 1 +
2**3 is 9, not 27, and 2 * 3**2 is 18, not 36.
Multiplication and Division have higher precedence than
Addition and Subtraction. So 2*3-1 is 5, not 4, and 6+4/2
is 8, not 5.
Operators with the same precedence are evaluated from
left to right (except exponentiation). So in the expression

degrees / 2 * pi, the division happens first and the result
is multiplied by pi. To divide by , you can use
parentheses or write degrees / 2 / pi.

I don’t work very hard to remember the precedence of
operators. If I can’t tell by looking at the expression, I use
parentheses to make it obvious.

String Operations

In general, you can’t perform mathematical operations on
strings, even if the strings look like numbers, so the
following are illegal:

'2'-'1' 'eggs'/'easy' 'third'*'a charm'

But there are two exceptions, + and *.
The + operator performs string concatenation, which
means it joins the strings by linking them end-to-end. For
example:

>>> first = 'throat'

>>> second = 'warbler'

>>> first + second

throatwarbler

The * operator also works on strings; it performs repetition.
For example, 'Spam'*3 is 'SpamSpamSpam'. If one of the values
is a string, the other has to be an integer.
This use of + and * makes sense by analogy with addition
and multiplication. Just as 4*3 is equivalent to 4+4+4, we
expect 'Spam'*3 to be the same as 'Spam'+'Spam'+'Spam', and
it is. On the other hand, there is a significant way in which
string concatenation and repetition are different from

integer addition and multiplication. Can you think of a
property that addition has that string concatenation does
not?

Comments

As programs get bigger and more complicated, they get
more difficult to read. Formal languages are dense, and it
is often difficult to look at a piece of code and figure out
what it is doing, or why.
For this reason, it is a good idea to add notes to your
programs to explain in natural language what the program
is doing. These notes are called comments, and they start
with the # symbol:

compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You
can also put comments at the end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it
has no effect on the execution of the program.
Comments are most useful when they document non-
obvious features of the code. It is reasonable to assume
that the reader can figure out what the code does; it is
more useful to explain why.
This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the
code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments,
but long names can make complex expressions hard to
read, so there is a trade-off.

Debugging

Three kinds of errors can occur in a program: syntax
errors, runtime errors, and semantic errors. It is useful to
distinguish between them in order to track them down
more quickly.
Syntax error:

“Syntax” refers to the structure of a program and the
rules about that structure. For example, parentheses
have to come in matching pairs, so (1 + 2) is legal, but
8) is a syntax error.
If there is a syntax error anywhere in your program,
Python displays an error message and quits, and you will
not be able to run the program. During the first few
weeks of your programming career, you might spend a
lot of time tracking down syntax errors. As you gain
experience, you will make fewer errors and find them
faster.

Runtime error:
The second type of error is a runtime error, so called
because the error does not appear until after the
program has started running. These errors are also

called exceptions because they usually indicate that
something exceptional (and bad) has happened.
Runtime errors are rare in the simple programs you will
see in the first few chapters, so it might be a while
before you encounter one.

Semantic error:
The third type of error is “semantic”, which means
related to meaning. If there is a semantic error in your
program, it will run without generating error messages,
but it will not do the right thing. It will do something
else. Specifically, it will do what you told it to do.
Identifying semantic errors can be tricky because it
requires you to work backward by looking at the output
of the program and trying to figure out what it is doing.

Glossary

variable:
A name that refers to a value.

assignment:
A statement that assigns a value to a variable.

state diagram:
A graphical representation of a set of variables and the
values they refer to.

keyword:
A reserved word that is used to parse a program; you
cannot use keywords like if, def, and while as variable
names.

operand:
One of the values on which an operator operates.

expression:
A combination of variables, operators, and values that
represents a single result.

evaluate:
To simplify an expression by performing the operations
in order to yield a single value.

statement:
A section of code that represents a command or action.
So far, the statements we have seen are assignments
and print statements.

execute:
To run a statement and do what it says.

interactive mode:
A way of using the Python interpreter by typing code at
the prompt.

script mode:
A way of using the Python interpreter to read code from
a script and run it.

script:
A program stored in a file.

order of operations:
Rules governing the order in which expressions
involving multiple operators and operands are
evaluated.

concatenate:
To join two operands end-to-end.

comment:
Information in a program that is meant for other
programmers (or anyone reading the source code) and
has no effect on the execution of the program.

syntax error:
An error in a program that makes it impossible to parse
(and therefore impossible to interpret).

exception:
An error that is detected while the program is running.

semantics:
The meaning of a program.

semantic error:
An error in a program that makes it do something other
than what the programmer intended.

Exercises

Exercise 2-1.

Repeating my advice from the previous chapter, whenever
you learn a new feature, you should try it out in interactive
mode and make errors on purpose to see what goes wrong.

We’ve seen that n = 42 is legal. What about 42 = n?
How about x = y = 1?
In some languages every statement ends with a
semicolon, ;. What happens if you put a semicolon at the

end of a Python statement?
What if you put a period at the end of a statement?
In math notation you can multiply x and y like this: .
What happens if you try that in Python?

Exercise 2-2.

Practice using the Python interpreter as a calculator:

1. The volume of a sphere with radius r is . What is
the volume of a sphere with radius 5?

2. Suppose the cover price of a book is $24.95, but
bookstores get a 40% discount. Shipping costs $3 for
the first copy and 75 cents for each additional copy.
What is the total wholesale cost for 60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an
easy pace (8:15 per mile), then 3 miles at tempo (7:12
per mile) and 1 mile at an easy pace again, what time
do I get home for breakfast?

Chapter 3. Functions

In the context of programming, a function is a named
sequence of statements that performs a computation. When
you define a function, you specify the name and the
sequence of statements. Later, you can “call” the function
by name.

Function Calls

We have already seen one example of a function call:

>>> type(42)

<class 'int'>

The name of the function is type. The expression in
parentheses is called the argument of the function. The
result, for this function, is the type of the argument.
It is common to say that a function “takes” an argument
and “returns” a result. The result is also called the return

value.
Python provides functions that convert values from one
type to another. The int function takes any value and
converts it to an integer, if it can, or complains otherwise:

>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it
doesn’t round off; it chops off the fraction part:

>>> int(3.99999)

3

>>> int(-2.3)

-2

float converts integers and strings to floating-point
numbers:

>>> float(32)

32.0

>>> float('3.14159')

3.14159

Finally, str converts its argument to a string:

>>> str(32)

'32'

>>> str(3.14159)

'3.14159'

Math Functions

Python has a math module that provides most of the
familiar mathematical functions. A module is a file that
contains a collection of related functions.
Before we can use the functions in a module, we have to
import it with an import statement:

>>> import math

This statement creates a module object named math. If
you display the module object, you get some information
about it:

>>> math

<module 'math' (built-in)>

The module object contains the functions and variables
defined in the module. To access one of the functions, you
have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This
format is called dot notation.

>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)

The first example uses math.log10 to compute a signal-to-
noise ratio in decibels (assuming that signal_power and
noise_power are defined). The math module also provides
log, which computes logarithms base e.
The second example finds the sine of radians. The name of
the variable is a hint that sin and the other trigonometric
functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 180 and multiply
by π:

>>> degrees = 45

>>> radians = degrees / 180.0 * math.pi

>>> math.sin(radians)

0.707106781187

The expression math.pi gets the variable pi from the math
module. Its value is a floating-point approximation of π,
accurate to about 15 digits.
If you know trigonometry, you can check the previous
result by comparing it to the square root of 2 divided by 2:

>>> math.sqrt(2) / 2.0

0.707106781187

Composition

So far, we have looked at the elements of a program—
variables, expressions, and statements—in isolation,
without talking about how to combine them.
One of the most useful features of programming languages
is their ability to take small building blocks and compose

them. For example, the argument of a function can be any
kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an
arbitrary expression, with one exception: the left side of an
assignment statement has to be a variable name. Any other
expression on the left side is a syntax error (we will see
exceptions to this rule later).

>>> minutes = hours * 60 # right

>>> hours * 60 = minutes # wrong!

SyntaxError: can't assign to operator

Adding New Functions

So far, we have only been using the functions that come
with Python, but it is also possible to add new functions. A
function definition specifies the name of a new function
and the sequence of statements that run when the function
is called.
Here is an example:

def print_lyrics():

 print("I'm a lumberjack, and I'm okay.")

 print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function
definition. The name of the function is print_lyrics. The
rules for function names are the same as for variable
names: letters, numbers and underscore are legal, but the
first character can’t be a number. You can’t use a keyword
as the name of a function, and you should avoid having a
variable and a function with the same name.
The empty parentheses after the name indicate that this
function doesn’t take any arguments.
The first line of the function definition is called the header;
the rest is called the body. The header has to end with a
colon and the body has to be indented. By convention,
indentation is always four spaces. The body can contain any
number of statements.
The strings in the print statements are enclosed in double
quotes. Single quotes and double quotes do the same thing;
most people use single quotes except in cases like this
where a single quote (which is also an apostrophe) appears
in the string.
All quotation marks (single and double) must be “straight
quotes”, usually located next to Enter on the keyboard.
“Curly quotes”, like the ones in this sentence, are not legal
in Python.
If you type a function definition in interactive mode, the
interpreter prints dots (...) to let you know that the
definition isn’t complete:

>>> def print_lyrics():

... print("I'm a lumberjack, and I'm okay.")

... print("I sleep all night and I work all day.")

...

To end the function, you have to enter an empty line.
Defining a function creates a function object, which has
type function:

>>> print(print_lyrics)

<function print_lyrics at 0xb7e99e9c>

>>> type(print_lyrics)

<class 'function'>

The syntax for calling the new function is the same as for
built-in functions:

>>> print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

Once you have defined a function, you can use it inside
another function. For example, to repeat the previous
refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():

 print_lyrics()

 print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

Definitions and Uses

Pulling together the code fragments from the previous
section, the whole program looks like this:

def print_lyrics():

 print("I'm a lumberjack, and I'm okay.")

 print("I sleep all night and I work all day.")

def repeat_lyrics():

 print_lyrics()

 print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics
and repeat_lyrics. Function definitions get executed just
like other statements, but the effect is to create function
objects. The statements inside the function do not run until
the function is called, and the function definition generates
no output.
As you might expect, you have to create a function before
you can run it. In other words, the function definition has to
run before the function gets called.
As an exercise, move the last line of this program to the
top, so the function call appears before the definitions. Run
the program and see what error message you get.
Now move the function call back to the bottom and move
the definition of print_lyrics after the definition of
repeat_lyrics. What happens when you run this program?

Flow of Execution

To ensure that a function is defined before its first use, you
have to know the order statements run in, which is called

the flow of execution.
Execution always begins at the first statement of the
program. Statements are run one at a time, in order from
top to bottom.
Function definitions do not alter the flow of execution of
the program, but remember that statements inside the
function don’t run until the function is called.
A function call is like a detour in the flow of execution.
Instead of going to the next statement, the flow jumps to
the body of the function, runs the statements there, and
then comes back to pick up where it left off.
That sounds simple enough, until you remember that one
function can call another. While in the middle of one
function, the program might have to run the statements in
another function. Then, while running that new function,
the program might have to run yet another function!
Fortunately, Python is good at keeping track of where it is,
so each time a function completes, the program picks up
where it left off in the function that called it. When it gets
to the end of the program, it terminates.
In summary, when you read a program, you don’t always
want to read from top to bottom. Sometimes it makes more
sense if you follow the flow of execution.

Parameters and Arguments

Some of the functions we have seen require arguments. For
example, when you call math.sin you pass a number as an
argument. Some functions take more than one argument:
math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to
variables called parameters. Here is a definition for a
function that takes an argument:

def print_twice(bruce):

 print(bruce)

 print(bruce)

This function assigns the argument to a parameter named
bruce. When the function is called, it prints the value of the
parameter (whatever it is) twice.
This function works with any value that can be printed:

>>> print_twice('Spam')

Spam

Spam

>>> print_twice(42)

42

42

>>> print_twice(math.pi)

3.14159265359

3.14159265359

The same rules of composition that apply to built-in
functions also apply to programmer-defined functions, so
we can use any kind of expression as an argument for
print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so
in the examples the expressions 'Spam '*4 and
math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael)
has nothing to do with the name of the parameter (bruce). It
doesn’t matter what the value was called back home (in the
caller); here in print_twice, we call everybody bruce.

Variables and Parameters Are Local

When you create a variable inside a function, it is local,
which means that it only exists inside the function. For
example:

def cat_twice(part1, part2):

 cat = part1 + part2

 print_twice(cat)

This function takes two arguments, concatenates them, and
prints the result twice. Here is an example that uses it:

>>> line1 = 'Bing tiddle '

>>> line2 = 'tiddle bang.'

>>> cat_twice(line1, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If
we try to print it, we get an exception:

>>> print(cat)

NameError: name 'cat' is not defined

Parameters are also local. For example, outside print_twice,
there is no such thing as bruce.

Stack Diagrams

To keep track of which variables can be used where, it is
sometimes useful to draw a stack diagram. Like state
diagrams, stack diagrams show the value of each variable,
but they also show the function each variable belongs to.
Each function is represented by a frame. A frame is a box
with the name of a function beside it and the parameters
and variables of the function inside it. The stack diagram
for the previous example is shown in Figure 3-1.

Figure 3-1. Stack diagram.

The frames are arranged in a stack that indicates which
function called which, and so on. In this example,
print_twice was called by cat_twice, and cat_twice was called
by __main__, which is a special name for the topmost frame.

When you create a variable outside of any function, it
belongs to __main__.
Each parameter refers to the same value as its
corresponding argument. So, part1 has the same value as
line1, part2 has the same value as line2, and bruce has the
same value as cat.
If an error occurs during a function call, Python prints the
name of the function, the name of the function that called
it, and the name of the function that called that, all the way
back to __main__.
For example, if you try to access cat from within
print_twice, you get a NameError:

Traceback (innermost last):

 File "test.py", line 13, in __main__

 cat_twice(line1, line2)

 File "test.py", line 5, in cat_twice

 print_twice(cat)

 File "test.py", line 9, in print_twice

 print(cat)

NameError: name 'cat' is not defined

This list of functions is called a traceback. It tells you what
program file the error occurred in, and what line, and what
functions were executing at the time. It also shows the line
of code that caused the error.
The order of the functions in the traceback is the same as
the order of the frames in the stack diagram. The function
that is currently running is at the bottom.

Fruitful Functions and Void Functions

Some of the functions we have used, such as the math
functions, return results; for lack of a better name, I call

them fruitful functions. Other functions, like print_twice,
perform an action but don’t return a value. They are called
void functions.
When you call a fruitful function, you almost always want to
do something with the result; for example, you might
assign it to a variable or use it as part of an expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python
displays the result:

>>> math.sqrt(5)

2.2360679774997898

But in a script, if you call a fruitful function all by itself, the
return value is lost forever!

math.sqrt(5)

This script computes the square root of 5, but since it
doesn’t store or display the result, it is not very useful.
Void functions might display something on the screen or
have some other effect, but they don’t have a return value.
If you assign the result to a variable, you get a special value
called None:

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string 'None'. It is a
special value that has its own type:

>>> print(type(None))

<class 'NoneType'>

The functions we have written so far are all void. We will
start writing fruitful functions in a few chapters.

Why Functions?

It may not be clear why it is worth the trouble to divide a
program into functions. There are several reasons:

Creating a new function gives you an opportunity to
name a group of statements, which makes your program
easier to read and debug.
Functions can make a program smaller by eliminating
repetitive code. Later, if you make a change, you only
have to make it in one place.
Dividing a long program into functions allows you to
debug the parts one at a time and then assemble them
into a working whole.
Well-designed functions are often useful for many
programs. Once you write and debug one, you can reuse
it.

Debugging

One of the most important skills you will acquire is
debugging. Although it can be frustrating, debugging is one
of the most intellectually rich, challenging, and interesting
parts of programming.
In some ways debugging is like detective work. You are
confronted with clues and you have to infer the processes
and events that led to the results you see.

Debugging is also like an experimental science. Once you
have an idea about what is going wrong, you modify your
program and try again. If your hypothesis was correct, you
can predict the result of the modification, and you take a
step closer to a working program. If your hypothesis was
wrong, you have to come up with a new one. As Sherlock
Holmes pointed out, “When you have eliminated the
impossible, whatever remains, however improbable, must
be the truth.” (A. Conan Doyle, The Sign of Four).
For some people, programming and debugging are the
same thing. That is, programming is the process of
gradually debugging a program until it does what you
want. The idea is that you should start with a working
program and make small modifications, debugging them as
you go.
For example, Linux is an operating system that contains
millions of lines of code, but it started out as a simple
program Linus Torvalds used to explore the Intel 80386
chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing
AAAA and BBBB. This later evolved to Linux.” (The Linux

Users’ Guide Beta Version 1).

Glossary

function:
A named sequence of statements that performs some
useful operation. Functions may or may not take
arguments and may or may not produce a result.

function definition:

A statement that creates a new function, specifying its
name, parameters, and the statements it contains.

function object:
A value created by a function definition. The name of the
function is a variable that refers to a function object.

header:
The first line of a function definition.

body:
The sequence of statements inside a function definition.

parameter:
A name used inside a function to refer to the value
passed as an argument.

function call:
A statement that runs a function. It consists of the
function name followed by an argument list in
parentheses.

argument:
A value provided to a function when the function is
called. This value is assigned to the corresponding
parameter in the function.

local variable:
A variable defined inside a function. A local variable can
only be used inside its function.

return value:
The result of a function. If a function call is used as an
expression, the return value is the value of the
expression.

fruitful function:
A function that returns a value.

void function:
A function that always returns None.

None:
A special value returned by void functions.

module:
A file that contains a collection of related functions and
other definitions.

import statement:
A statement that reads a module file and creates a
module object.

module object:
A value created by an import statement that provides
access to the values defined in a module.

dot notation:
The syntax for calling a function in another module by
specifying the module name followed by a dot (period)
and the function name.

composition:
Using an expression as part of a larger expression, or a
statement as part of a larger statement.

flow of execution:
The order statements run in.

stack diagram:

A graphical representation of a stack of functions, their
variables, and the values they refer to.

frame:
A box in a stack diagram that represents a function call.
It contains the local variables and parameters of the
function.

traceback:
A list of the functions that are executing, printed when
an exception occurs.

Exercises

Exercise 3-1.

Write a function named right_justify that takes a string
named s as a parameter and prints the string with enough
leading spaces so that the last letter of the string is in
column 70 of the display:
>>> right_justify('monty')

 monty

Hint: Use string concatenation and repetition. Also, Python
provides a built-in function called len that returns the
length of a string, so the value of len('monty') is 5.

Exercise 3-2.

A function object is a value you can assign to a variable or
pass as an argument. For example, do_twice is a function
that takes a function object as an argument and calls it
twice:
def do_twice(f):

 f()

 f()

Here’s an example that uses do_twice to call a function
named print_spam twice:
def print_spam():

 print('spam')

do_twice(print_spam)

1. Type this example into a script and test it.
2. Modify do_twice so that it takes two arguments, a

function object and a value, and calls the function
twice, passing the value as an argument.

3. Copy the definition of print_twice from earlier in this
chapter to your script.

4. Use the modified version of do_twice to call print_twice
twice, passing 'spam' as an argument.

5. Define a new function called do_four that takes a
function object and a value and calls the function four
times, passing the value as a parameter. There should
be only two statements in the body of this function, not
four.

Solution: http://thinkpython2.com/code/do_four.py.

Exercise 3-3.

Note: This exercise should be done using only the
statements and other features we have learned so far.

1. Write a function that draws a grid like the following:
+ - - - - + - - - - +

| | |

| | |

| | |

| | |

+ - - - - + - - - - +

| | |

| | |

| | |

http://thinkpython2.com/code/do_four.py

| | |

+ - - - - + - - - - +

Hint: to print more than one value on a line, you can
print a comma-separated sequence of values:
print('+', '-')

By default, print advances to the next line, but you can
override that behavior and put a space at the end, like
this:
print('+', end=' ')

print('-')

The output of these statements is '+ -'.
A print statement with no argument ends the current
line and goes to the next line.

2. Write a function that draws a similar grid with four
rows and four columns.

Solution: http://thinkpython2.com/code/grid.py. Credit: This
exercise is based on an exercise in Oualline, Practical C

Programming, Third Edition, O’Reilly Media, 1997.

http://thinkpython2.com/code/grid.py

Chapter 4. Case Study:

Interface Design

This chapter presents a case study that demonstrates a
process for designing functions that work together.
It introduces the turtle module, which allows you to create
images using turtle graphics. The turtle module is included
in most Python installations, but if you are running Python
using PythonAnywhere, you won’t be able to run the turtle
examples (at least you couldn’t when I wrote this).
If you have already installed Python on your computer, you
should be able to run the examples. Otherwise, now is a
good time to install. I have posted instructions at
http://tinyurl.com/thinkpython2e.
Code examples from this chapter are available from
http://thinkpython2.com/code/polygon.py.

The turtle Module

To check whether you have the turtle module, open the
Python interpreter and type:

>>> import turtle

>>> bob = turtle.Turtle()

When you run this code, it should create a new window
with a small arrow that represents the turtle. Close the
window.

http://tinyurl.com/thinkpython2e
http://thinkpython2.com/code/polygon.py

Create a file named mypolygon.py and type in the following
code:

import turtle

bob = turtle.Turtle()

print(bob)

turtle.mainloop()

The turtle module (with a lowercase t) provides a function
called Turtle (with an uppercase T) that creates a Turtle
object, which we assign to a variable named bob. Printing
bob displays something like:

<turtle.Turtle object at 0xb7bfbf4c>

This means that bob refers to an object with type Turtle as
defined in module turtle.
mainloop tells the window to wait for the user to do
something, although in this case there’s not much for the
user to do except close the window.
Once you create a Turtle, you can call a method to move it
around the window. A method is similar to a function, but it
uses slightly different syntax. For example, to move the
turtle forward:

bob.fd(100)

The method, fd, is associated with the turtle object we’re
calling bob. Calling a method is like making a request: you
are asking bob to move forward.
The argument of fd is a distance in pixels, so the actual size
depends on your display.

Other methods you can call on a Turtle are bk to move
backward, lt for left turn, and rt right turn. The argument
for lt and rt is an angle in degrees.
Also, each Turtle is holding a pen, which is either down or
up; if the pen is down, the Turtle leaves a trail when it
moves. The methods pu and pd stand for “pen up” and “pen
down”.
To draw a right angle, add these lines to the program (after
creating bob and before calling mainloop):

bob.fd(100)

bob.lt(90)

bob.fd(100)

When you run this program, you should see bob move east
and then north, leaving two line segments behind.
Now modify the program to draw a square. Don’t go on
until you’ve got it working!

Simple Repetition

Chances are you wrote something like this:

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

We can do the same thing more concisely with a for
statement. Add this example to mypolygon.py and run it

again:

for i in range(4):

 print('Hello!')

You should see something like this:

Hello!

Hello!

Hello!

Hello!

This is the simplest use of the for statement; we will see
more later. But that should be enough to let you rewrite
your square-drawing program. Don’t go on until you do.
Here is a for statement that draws a square:

for i in range(4):

 bob.fd(100)

 bob.lt(90)

The syntax of a for statement is similar to a function
definition. It has a header that ends with a colon and an
indented body. The body can contain any number of
statements.
A for statement is also called a loop because the flow of
execution runs through the body and then loops back to the
top. In this case, it runs the body four times.
This version is actually a little different from the previous
square-drawing code because it makes another turn after
drawing the last side of the square. The extra turn takes
more time, but it simplifies the code if we do the same
thing every time through the loop. This version also has the
effect of leaving the turtle back in the starting position,
facing in the starting direction.

Exercises

The following is a series of exercises using TurtleWorld.
They are meant to be fun, but they have a point, too. While
you are working on them, think about what the point is.
The following sections have solutions to the exercises, so
don’t look until you have finished (or at least tried).

1. Write a function called square that takes a parameter
named t, which is a turtle. It should use the turtle to
draw a square.
Write a function call that passes bob as an argument to
square, and then run the program again.

2. Add another parameter, named length, to square.
Modify the body so length of the sides is length, and
then modify the function call to provide a second
argument. Run the program again. Test your program
with a range of values for length.

3. Make a copy of square and change the name to polygon.
Add another parameter named n and modify the body
so it draws an n-sided regular polygon.
Hint: The exterior angles of an n-sided regular polygon
are 360/n degrees.

4. Write a function called circle that takes a turtle, t, and
radius, r, as parameters and that draws an
approximate circle by calling polygon with an
appropriate length and number of sides. Test your
function with a range of values of r.
Hint: figure out the circumference of the circle and
make sure that length * n = circumference.

5. Make a more general version of circle called arc that
takes an additional parameter angle, which determines
what fraction of a circle to draw. angle is in units of
degrees, so when angle=360, arc should draw a complete
circle.

Encapsulation

The first exercise asks you to put your square-drawing code
into a function definition and then call the function, passing
the turtle as a parameter. Here is a solution:

def square(t):

 for i in range(4):

 t.fd(100)

 t.lt(90)

square(bob)

The innermost statements, fd and lt, are indented twice to
show that they are inside the for loop, which is inside the
function definition. The next line, square(bob), is flush with
the left margin, which indicates the end of both the for loop
and the function definition.
Inside the function, t refers to the same turtle bob, so
t.lt(90) has the same effect as bob.lt(90). In that case, why
not call the parameter bob? The idea is that t can be any
turtle, not just bob, so you could create a second turtle and
pass it as an argument to square:

alice = Turtle()

square(alice)

Wrapping a piece of code up in a function is called
encapsulation. One of the benefits of encapsulation is that
it attaches a name to the code, which serves as a kind of
documentation. Another advantage is that if you reuse the
code, it is more concise to call a function twice than to copy
and paste the body!

Generalization

The next step is to add a length parameter to square. Here is
a solution:

def square(t, length):

 for i in range(4):

 t.fd(length)

 t.lt(90)

square(bob, 100)

Adding a parameter to a function is called generalization

because it makes the function more general: in the
previous version, the square is always the same size; in this
version it can be any size.
The next step is also a generalization. Instead of drawing
squares, polygon draws regular polygons with any number
of sides. Here is a solution:

def polygon(t, n, length):

 angle = 360 / n

 for i in range(n):

 t.fd(length)

 t.lt(angle)

polygon(bob, 7, 70)

This example draws a 7-sided polygon with side length 70.

If you are using Python 2, the value of angle might be off
because of integer division. A simple solution is to compute
angle = 360.0 / n. Because the numerator is a floating-point
number, the result is floating point.
When a function has more than a few numeric arguments,
it is easy to forget what they are, or what order they should
be in. In that case it is often a good idea to include the
names of the parameters in the argument list:

polygon(bob, n=7, length=70)

These are called keyword arguments because they
include the parameter names as “keywords” (not to be
confused with Python keywords like while and def).
This syntax makes the program more readable. It is also a
reminder about how arguments and parameters work:
when you call a function, the arguments are assigned to the
parameters.

Interface Design

The next step is to write circle, which takes a radius, r, as a
parameter. Here is a simple solution that uses polygon to
draw a 50-sided polygon:

import math

def circle(t, r):

 circumference = 2 * math.pi * r

 n = 50

 length = circumference / n

 polygon(t, n, length)

The first line computes the circumference of a circle with
radius r using the formula . Since we use math.pi, we

have to import math. By convention, import statements are
usually at the beginning of the script.
n is the number of line segments in our approximation of a
circle, so length is the length of each segment. Thus, polygon
draws a 50-sided polygon that approximates a circle with
radius r.
One limitation of this solution is that n is a constant, which
means that for very big circles, the line segments are too
long, and for small circles, we waste time drawing very
small segments. One solution would be to generalize the
function by taking n as a parameter. This would give the
user (whoever calls circle) more control, but the interface
would be less clean.
The interface of a function is a summary of how it is used:
what are the parameters? What does the function do? And
what is the return value? An interface is “clean” if it allows
the caller to do what they want without dealing with
unnecessary details.
In this example, r belongs in the interface because it
specifies the circle to be drawn. n is less appropriate
because it pertains to the details of how the circle should
be rendered.
Rather than clutter up the interface, it is better to choose
an appropriate value of n depending on circumference:

def circle(t, r):

 circumference = 2 * math.pi * r

 n = int(circumference / 3) + 1

 length = circumference / n

 polygon(t, n, length)

Now the number of segments is an integer near
circumference/3, so the length of each segment is
approximately 3, which is small enough that the circles look
good, but big enough to be efficient, and acceptable for any
size circle.

Refactoring

When I wrote circle, I was able to reuse polygon because a
many-sided polygon is a good approximation of a circle. But
arc is not as cooperative; we can’t use polygon or circle to
draw an arc.
One alternative is to start with a copy of polygon and
transform it into arc. The result might look like this:

def arc(t, r, angle):

 arc_length = 2 * math.pi * r * angle / 360

 n = int(arc_length / 3) + 1

 step_length = arc_length / n

 step_angle = angle / n

 for i in range(n):

 t.fd(step_length)

 t.lt(step_angle)

The second half of this function looks like polygon, but we
can’t reuse polygon without changing the interface. We
could generalize polygon to take an angle as a third
argument, but then polygon would no longer be an
appropriate name! Instead, let’s call the more general
function polyline:

def polyline(t, n, length, angle):

 for i in range(n):

 t.fd(length)

 t.lt(angle)

Now we can rewrite polygon and arc to use polyline:

def polygon(t, n, length):

 angle = 360.0 / n

 polyline(t, n, length, angle)

def arc(t, r, angle):

 arc_length = 2 * math.pi * r * angle / 360

 n = int(arc_length / 3) + 1

 step_length = arc_length / n

 step_angle = float(angle) / n

 polyline(t, n, step_length, step_angle)

Finally, we can rewrite circle to use arc:

def circle(t, r):

 arc(t, r, 360)

This process—rearranging a program to improve interfaces
and facilitate code reuse—is called refactoring. In this
case, we noticed that there was similar code in arc and
polygon, so we “factored it out” into polyline.
If we had planned ahead, we might have written polyline
first and avoided refactoring, but often you don’t know
enough at the beginning of a project to design all the
interfaces. Once you start coding, you understand the
problem better. Sometimes refactoring is a sign that you
have learned something.

A Development Plan

A development plan is a process for writing programs.
The process we used in this case study is “encapsulation
and generalization”. The steps of this process are:

1. Start by writing a small program with no function
definitions.

2. Once you get the program working, identify a coherent
piece of it, encapsulate the piece in a function and give
it a name.

3. Generalize the function by adding appropriate
parameters.

4. Repeat steps 1–3 until you have a set of working
functions. Copy and paste working code to avoid
retyping (and re-debugging).

5. Look for opportunities to improve the program by
refactoring. For example, if you have similar code in
several places, consider factoring it into an
appropriately general function.

This process has some drawbacks—we will see alternatives
later—but it can be useful if you don’t know ahead of time
how to divide the program into functions. This approach
lets you design as you go along.

docstring

A docstring is a string at the beginning of a function that
explains the interface (“doc” is short for “documentation”).
Here is an example:

def polyline(t, n, length, angle):

 """Draws n line segments with the given length and

 angle (in degrees) between them. t is a turtle.

 """

 for i in range(n):

 t.fd(length)

 t.lt(angle)

By convention, all docstrings are triple-quoted strings, also
known as multiline strings because the triple quotes allow
the string to span more than one line.

It is terse, but it contains the essential information
someone would need to use this function. It explains
concisely what the function does (without getting into the
details of how it does it). It explains what effect each
parameter has on the behavior of the function and what
type each parameter should be (if it is not obvious).
Writing this kind of documentation is an important part of
interface design. A well-designed interface should be
simple to explain; if you have a hard time explaining one of
your functions, maybe the interface could be improved.

Debugging

An interface is like a contract between a function and a
caller. The caller agrees to provide certain parameters and
the function agrees to do certain work.
For example, polyline requires four arguments: t has to be
a Turtle; n has to be an integer; length should be a positive
number; and angle has to be a number, which is understood
to be in degrees.
These requirements are called preconditions because they
are supposed to be true before the function starts
executing. Conversely, conditions at the end of the function
are postconditions. Postconditions include the intended
effect of the function (like drawing line segments) and any
side effects (like moving the Turtle or making other
changes).
Preconditions are the responsibility of the caller. If the
caller violates a (properly documented!) precondition and
the function doesn’t work correctly, the bug is in the caller,
not the function.

If the preconditions are satisfied and the postconditions are
not, the bug is in the function. If your pre- and
postconditions are clear, they can help with debugging.

Glossary

method:
A function that is associated with an object and called
using dot notation.

loop:
A part of a program that can run repeatedly.

encapsulation:
The process of transforming a sequence of statements
into a function definition.

generalization:
The process of replacing something unnecessarily
specific (like a number) with something appropriately
general (like a variable or parameter).

keyword argument:
An argument that includes the name of the parameter as
a “keyword”.

interface:
A description of how to use a function, including the
name and descriptions of the arguments and return
value.

refactoring:
The process of modifying a working program to improve
function interfaces and other qualities of the code.

development plan:
A process for writing programs.

docstring:
A string that appears at the top of a function definition
to document the function’s interface.

precondition:
A requirement that should be satisfied by the caller
before a function starts.

postcondition:
A requirement that should be satisfied by the function
before it ends.

Exercises

Exercise 4-1.

Download the code in this chapter from
http://thinkpython2.com/code/polygon.py.

1. Draw a stack diagram that shows the state of the
program while executing circle(bob, radius). You can
do the arithmetic by hand or add print statements to
the code.

2. The version of arc in “Refactoring” is not very accurate
because the linear approximation of the circle is
always outside the true circle. As a result, the Turtle
ends up a few pixels away from the correct destination.
My solution shows a way to reduce the effect of this
error. Read the code and see if it makes sense to you.
If you draw a diagram, you might see how it works.

http://thinkpython2.com/code/polygon.py

Exercise 4-2.

Write an appropriately general set of functions that can
draw flowers as in Figure 4-1.

Figure 4-1. Turtle flowers.

Solution: http://thinkpython2.com/code/flower.py, also
requires http://thinkpython2.com/code/polygon.py.

Exercise 4-3.

Write an appropriately general set of functions that can
draw shapes as in Figure 4-2.

Figure 4-2. Turtle pies.

http://thinkpython2.com/code/flower.py
http://thinkpython2.com/code/polygon.py

Solution: http://thinkpython2.com/code/pie.py.

Exercise 4-4.

The letters of the alphabet can be constructed from a
moderate number of basic elements, like vertical and
horizontal lines and a few curves. Design an alphabet that
can be drawn with a minimal number of basic elements and
then write functions that draw the letters.
You should write one function for each letter, with names
draw_a, draw_b, etc., and put your functions in a file named
letters.py. You can download a “turtle typewriter” from
http://thinkpython2.com/code/typewriter.py to help you test
your code.
You can get a solution from
http://thinkpython2.com/code/letters.py; it also requires
http://thinkpython2.com/code/polygon.py.

Exercise 4-5.

Read about spirals at http://en.wikipedia.org/wiki/Spiral;
then write a program that draws an Archimedian spiral (or
one of the other kinds).
Solution: http://thinkpython2.com/code/spiral.py.

http://thinkpython2.com/code/pie.py
http://thinkpython2.com/code/typewriter.py
http://thinkpython2.com/code/letters.py
http://thinkpython2.com/code/polygon.py
http://en.wikipedia.org/wiki/Spiral
http://thinkpython2.com/code/spiral.py

Chapter 5. Conditionals

and Recursion

The main topic of this chapter is the if statement, which
executes different code depending on the state of the
program. But first I want to introduce two new operators:
floor division and modulus.

Floor Division and Modulus

The floor division operator, //, divides two numbers and
rounds down to an integer. For example, suppose the run
time of a movie is 105 minutes. You might want to know
how long that is in hours. Conventional division returns a
floating-point number:

>>> minutes = 105

>>> minutes / 60

1.75

But we don’t normally write hours with decimal points.
Floor division returns the integer number of hours,
dropping the fraction part:

>>> minutes = 105

>>> hours = minutes // 60

>>> hours

1

To get the remainder, you could subtract off one hour in
minutes:

>>> remainder = minutes - hours * 60

>>> remainder

45

An alternative is to use the modulus operator, %, which
divides two numbers and returns the remainder:

>>> remainder = minutes % 60

>>> remainder

45

The modulus operator is more useful than it seems. For
example, you can check whether one number is divisible by
another—if x % y is zero, then x is divisible by y.
Also, you can extract the right-most digit or digits from a
number. For example, x % 10 yields the right-most digit of x
(in base 10). Similarly x % 100 yields the last two digits.
If you are using Python 2, division works differently. The
division operator, /, performs floor division if both
operands are integers, and floating-point division if either
operand is a float.

Boolean Expressions

A boolean expression is an expression that is either true
or false. The following examples use the operator ==, which
compares two operands and produces True if they are equal
and False otherwise:

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type
bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

The == operator is one of the relational operators; the
others are:

 x != y # x is not equal to y

 x > y # x is greater than y

 x < y # x is less than y

 x >= y # x is greater than or equal to y

 x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the
Python symbols are different from the mathematical
symbols. A common error is to use a single equal sign (=)
instead of a double equal sign (==). Remember that = is an
assignment operator and == is a relational operator. There
is no such thing as =< or =>.

Logical Operators

There are three logical operators: and, or, and not. The
semantics (meaning) of these operators is similar to their
meaning in English. For example, x > 0 and x < 10 is true
only if x is greater than 0 and less than 10.
n%2 == 0 or n%3 == 0 is true if either or both of the
conditions is true, that is, if the number is divisible by 2 or

3.

Finally, the not operator negates a boolean expression, so
not (x > y) is true if x > y is false, that is, if x is less than or
equal to y.
Strictly speaking, the operands of the logical operators
should be boolean expressions, but Python is not very
strict. Any nonzero number is interpreted as True:

>>> 42 and True

True

This flexibility can be useful, but there are some subtleties
to it that might be confusing. You might want to avoid it
(unless you know what you are doing).

Conditional Execution

In order to write useful programs, we almost always need
the ability to check conditions and change the behavior of
the program accordingly. Conditional statements give us
this ability. The simplest form is the if statement:

if x > 0:

 print('x is positive')

The boolean expression after if is called the condition. If
it is true, the indented statement runs. If not, nothing
happens.
if statements have the same structure as function
definitions: a header followed by an indented body.
Statements like this are called compound statements.
There is no limit on the number of statements that can
appear in the body, but there has to be at least one.
Occasionally, it is useful to have a body with no statements

(usually as a place keeper for code you haven’t written yet).
In that case, you can use the pass statement, which does
nothing.

if x < 0:

 pass # TODO: need to handle negative values!

Alternative Execution

A second form of the if statement is “alternative
execution”, in which there are two possibilities and the
condition determines which one runs. The syntax looks like
this:

if x % 2 == 0:

 print('x is even')

else:

 print('x is odd')

If the remainder when x is divided by 2 is 0, then we know
that x is even, and the program displays an appropriate
message. If the condition is false, the second set of
statements runs. Since the condition must be true or false,
exactly one of the alternatives will run. The alternatives are
called branches, because they are branches in the flow of
execution.

Chained Conditionals

Sometimes there are more than two possibilities and we
need more than two branches. One way to express a
computation like that is a chained conditional:

if x < y:

 print('x is less than y')

elif x > y:

 print('x is greater than y')

else:

 print('x and y are equal')

elif is an abbreviation of “else if”. Again, exactly one
branch will run. There is no limit on the number of elif
statements. If there is an else clause, it has to be at the
end, but there doesn’t have to be one.

if choice == 'a':

 draw_a()

elif choice == 'b':

 draw_b()

elif choice == 'c':

 draw_c()

Each condition is checked in order. If the first is false, the
next is checked, and so on. If one of them is true, the
corresponding branch runs and the statement ends. Even if
more than one condition is true, only the first true branch
runs.

Nested Conditionals

One conditional can also be nested within another. We
could have written the example in the previous section like
this:

if x == y:

 print('x and y are equal')

else:

 if x < y:

 print('x is less than y')

 else:

 print('x is greater than y')

The outer conditional contains two branches. The first
branch contains a simple statement. The second branch
contains another if statement, which has two branches of
its own. Those two branches are both simple statements,
although they could have been conditional statements as
well.
Although the indentation of the statements makes the
structure apparent, nested conditionals become difficult
to read very quickly. It is a good idea to avoid them when
you can.
Logical operators often provide a way to simplify nested
conditional statements. For example, we can rewrite the
following code using a single conditional:

if 0 < x:

 if x < 10:

 print('x is a positive single-digit number.')

The print statement runs only if we make it past both
conditionals, so we can get the same effect with the and
operator:

if 0 < x and x < 10:

 print('x is a positive single-digit number.')

For this kind of condition, Python provides a more concise
option:

if 0 < x < 10:

 print('x is a positive single-digit number.')

Recursion

It is legal for one function to call another; it is also legal for
a function to call itself. It may not be obvious why that is a

good thing, but it turns out to be one of the most magical
things a program can do. For example, look at the following
function:

def countdown(n):

 if n <= 0:

 print('Blastoff!')

 else:

 print(n)

 countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!”
Otherwise, it outputs n and then calls a function named
countdown—itself—passing n-1 as an argument.
What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is
greater than 0, it outputs the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is

greater than 0, it outputs the value 2, and then calls

itself...

The execution of countdown begins with n=1, and since n is greater than 0, it

outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and since n is not greater

than 0, it outputs the word, “Blastoff!” and then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back in __main__. So, the total output looks
like this:

3

2

1

Blastoff!

A function that calls itself is recursive; the process of
executing it is called recursion.
As another example, we can write a function that prints a
string n times:

def print_n(s, n):

 if n <= 0:

 return

 print(s)

 print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow
of execution immediately returns to the caller, and the
remaining lines of the function don’t run.
The rest of the function is similar to countdown: it displays s
and then calls itself to display s n-1 additional times. So the
number of lines of output is 1 + (n - 1), which adds up to n.
For simple examples like this, it is probably easier to use a
for loop. But we will see examples later that are hard to
write with a for loop and easy to write with recursion, so it
is good to start early.

Stack Diagrams for Recursive

Functions

In “Stack Diagrams”, we used a stack diagram to represent
the state of a program during a function call. The same
kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a frame to
contain the function’s local variables and parameters. For a
recursive function, there might be more than one frame on
the stack at the same time.
Figure 5-1 shows a stack diagram for countdown called with n
= 3.

Figure 5-1. Stack diagram.

As usual, the top of the stack is the frame for __main__. It is
empty because we did not create any variables in __main__
or pass any arguments to it.
The four countdown frames have different values for the
parameter n. The bottom of the stack, where n=0, is called
the base case. It does not make a recursive call, so there
are no more frames.
As an exercise, draw a stack diagram for print_n called with
s = 'Hello' and n=2. Then write a function called do_n that
takes a function object and a number, n, as arguments, and
that calls the given function n times.

Infinite Recursion

If a recursion never reaches a base case, it goes on making
recursive calls forever, and the program never terminates.
This is known as infinite recursion, and it is generally not
a good idea. Here is a minimal program with an infinite
recursion:

def recurse():

 recurse()

In most programming environments, a program with
infinite recursion does not really run forever. Python
reports an error message when the maximum recursion
depth is reached:

 File "<stdin>", line 2, in recurse

 File "<stdin>", line 2, in recurse

 File "<stdin>", line 2, in recurse

 .

 .

 .

 File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the
previous chapter. When the error occurs, there are 1,000
recurse frames on the stack!
If you write an infinite recursion by accident, review your
function to confirm that there is a base case that does not
make a recursive call. And if there is a base case, check
whether you are guaranteed to reach it.

Keyboard Input

The programs we have written so far accept no input from
the user. They just do the same thing every time.
Python provides a built-in function called input that stops
the program and waits for the user to type something.
When the user presses Return or Enter, the program
resumes and input returns what the user typed as a string.
In Python 2, the same function is called raw_input.

>>> text = input()

What are you waiting for?

>>> text

What are you waiting for?

Before getting input from the user, it is a good idea to print
a prompt telling the user what to type. input can take a
prompt as an argument:

>>> name = input('What...is your name?\n')

What...is your name?

Arthur, King of the Britons!

>>> name

Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a
newline, which is a special character that causes a line
break. That’s why the user’s input appears below the
prompt.
If you expect the user to type an integer, you can try to
convert the return value to int:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

42

>>> int(speed)

42

But if the user types something other than a string of
digits, you get an error:

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int() with base 10

We will see how to handle this kind of error later.

Debugging

When a syntax or runtime error occurs, the error message
contains a lot of information, but it can be overwhelming.
The most useful parts are usually:

What kind of error it was
Where it occurred

Syntax errors are usually easy to find, but there are a few
gotchas. Whitespace errors can be tricky because spaces
and tabs are invisible and we are used to ignoring them.

>>> x = 5

>>> y = 6

 File "<stdin>", line 1

 y = 6

 ^

IndentationError: unexpected indent

In this example, the problem is that the second line is
indented by one space. But the error message points to y,
which is misleading. In general, error messages indicate
where the problem was discovered, but the actual error
might be earlier in the code, sometimes on a previous line.
The same is true of runtime errors. Suppose you are trying
to compute a signal-to-noise ratio in decibels. The formula
is . In Python, you might write
something like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power // noise_power

decibels = 10 * math.log10(ratio)

print(decibels)

When you run this program, you get an exception:

Traceback (most recent call last):

 File "snr.py", line 5, in ?

 decibels = 10 * math.log10(ratio)

ValueError: math domain error

The error message indicates line 5, but there is nothing
wrong with that line. To find the real error, it might be
useful to print the value of ratio, which turns out to be 0.
The problem is in line 4, which uses floor division instead of
floating-point division.

You should take the time to read error messages carefully,
but don’t assume that everything they say is correct.

Glossary

floor division:
An operator, denoted //, that divides two numbers and
rounds down (toward zero) to an integer.

modulus operator:
An operator, denoted with a percent sign (%), that works
on integers and returns the remainder when one number
is divided by another.

boolean expression:
An expression whose value is either True or False.

relational operator:
One of the operators that compares its operands: ==, !=,
>, <, >=, and <=.

logical operator:
One of the operators that combines boolean expressions:
and, or, and not.

conditional statement:
A statement that controls the flow of execution
depending on some condition.

condition:
The boolean expression in a conditional statement that
determines which branch runs.

compound statement:

A statement that consists of a header and a body. The
header ends with a colon (:). The body is indented
relative to the header.

branch:
One of the alternative sequences of statements in a
conditional statement.

chained conditional:
A conditional statement with a series of alternative
branches.

nested conditional:
A conditional statement that appears in one of the
branches of another conditional statement.

return statement:
A statement that causes a function to end immediately
and return to the caller.

recursion:
The process of calling the function that is currently
executing.

base case:
A conditional branch in a recursive function that does
not make a recursive call.

infinite recursion:
A recursion that doesn’t have a base case, or never
reaches it. Eventually, an infinite recursion causes a
runtime error.

Exercises

Exercise 5-1.

The time module provides a function, also named time, that
returns the current Greenwich Mean Time in “the epoch”,
which is an arbitrary time used as a reference point. On
UNIX systems, the epoch is 1 January 1970.
>>> import time

>>> time.time()

1437746094.5735958

Write a script that reads the current time and converts it to
a time of day in hours, minutes, and seconds, plus the
number of days since the epoch.

Exercise 5-2.

Fermat’s Last Theorem says that there are no positive
integers a, b, and c such that

for any values of n greater than 2.
1. Write a function named check_fermat that takes four

parameters—a, b, c and n—and checks to see if
Fermat’s theorem holds. If n is greater than 2 and

the program should print, “Holy smokes, Fermat was
wrong!” Otherwise the program should print, “No, that
doesn’t work.”

2. Write a function that prompts the user to input values
for a, b, c and n, converts them to integers, and uses
check_fermat to check whether they violate Fermat’s
theorem.

Exercise 5-3.

If you are given three sticks, you may or may not be able to
arrange them in a triangle. For example, if one of the sticks
is 12 inches long and the other two are one inch long, you
will not be able to get the short sticks to meet in the
middle. For any three lengths, there is a simple test to see
if it is possible to form a triangle:
If any of the three lengths is greater than the sum of the

other two, then you cannot form a triangle. Otherwise,

you can. (If the sum of two lengths equals the third, they

form what is called a “degenerate” triangle.)

1. Write a function named is_triangle that takes three
integers as arguments, and that prints either “Yes” or
“No”, depending on whether you can or cannot form a
triangle from sticks with the given lengths.

2. Write a function that prompts the user to input three
stick lengths, converts them to integers, and uses
is_triangle to check whether sticks with the given
lengths can form a triangle.

Exercise 5-4.

What is the output of the following program? Draw a stack
diagram that shows the state of the program when it prints
the result.
def recurse(n, s):

 if n == 0:

 print(s)

 else:

 recurse(n-1, n+s)

recurse(3, 0)

1. What would happen if you called this function like this:
recurse(-1, 0)?

2. Write a docstring that explains everything someone
would need to know in order to use this function (and

nothing else).

The following exercises use the turtle module, described in
Chapter 4:
Exercise 5-5.

Read the following function and see if you can figure out
what it does (see the examples in Chapter 4). Then run it
and see if you got it right.
def draw(t, length, n):

 if n == 0:

 return

 angle = 50

 t.fd(length*n)

 t.lt(angle)

 draw(t, length, n-1)

 t.rt(2*angle)

 draw(t, length, n-1)

 t.lt(angle)

 t.bk(length*n)

Figure 5-2. A Koch curve.

Exercise 5-6.

The Koch curve is a fractal that looks something like
Figure 5-2. To draw a Koch curve with length x, all you
have to do is:

1. Draw a Koch curve with length x/3.
2. Turn left 60 degrees.

3. Draw a Koch curve with length x/3.
4. Turn right 120 degrees.
5. Draw a Koch curve with length x/3.
6. Turn left 60 degrees.
7. Draw a Koch curve with length x/3.

The exception is if x is less than 3: in that case, you can just
draw a straight line with length x.

1. Write a function called koch that takes a turtle and a
length as parameters, and that uses the turtle to draw
a Koch curve with the given length.

2. Write a function called snowflake that draws three Koch
curves to make the outline of a snowflake.
Solution: http://thinkpython2.com/code/koch.py.

3. The Koch curve can be generalized in several ways.
See http://en.wikipedia.org/wiki/Koch_snowflake for
examples and implement your favorite.

http://thinkpython2.com/code/koch.py
http://en.wikipedia.org/wiki/Koch_snowflake

Chapter 6. Fruitful

Functions

Many of the Python functions we have used, such as the
math functions, produce return values. But the functions
we’ve written are all void: they have an effect, like printing
a value or moving a turtle, but they don’t have a return
value. In this chapter you will learn to write fruitful
functions.

Return Values

Calling the function generates a return value, which we
usually assign to a variable or use as part of an expression.

e = math.exp(1.0)

height = radius * math.sin(radians)

The functions we have written so far are void. Speaking
casually, they have no return value; more precisely, their
return value is None.
In this chapter, we are (finally) going to write fruitful
functions. The first example is area, which returns the area
of a circle with the given radius:

def area(radius):

 a = math.pi * radius**2

 return a

We have seen the return statement before, but in a fruitful
function the return statement includes an expression. This

statement means: “Return immediately from this function
and use the following expression as a return value.” The
expression can be arbitrarily complicated, so we could have
written this function more concisely:

def area(radius):

 return math.pi * radius**2

On the other hand, temporary variables like a can make
debugging easier.
Sometimes it is useful to have multiple return statements,
one in each branch of a conditional:

def absolute_value(x):

 if x < 0:

 return -x

 else:

 return x

Since these return statements are in an alternative
conditional, only one runs.
As soon as a return statement runs, the function terminates
without executing any subsequent statements. Code that
appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.
In a fruitful function, it is a good idea to ensure that every
possible path through the program hits a return statement.
For example:

def absolute_value(x):

 if x < 0:

 return -x

 if x > 0:

 return x

This function is incorrect because if x happens to be 0,
neither condition is true, and the function ends without
hitting a return statement. If the flow of execution gets to
the end of a function, the return value is None, which is not
the absolute value of 0:

>>> absolute_value(0)

None

By the way, Python provides a built-in function called abs
that computes absolute values.
As an exercise, write a compare function takes two values, x
and y, and returns 1 if x > y, 0 if x == y, and -1 if x < y.

Incremental Development

As you write larger functions, you might find yourself
spending more time debugging.
To deal with increasingly complex programs, you might
want to try a process called incremental development.
The goal of incremental development is to avoid long
debugging sessions by adding and testing only a small
amount of code at a time.
As an example, suppose you want to find the distance
between two points, given by the coordinates and

. By the Pythagorean theorem, the distance is:

The first step is to consider what a distance function should
look like in Python. In other words, what are the inputs
(parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can
represent using four numbers. The return value is the
distance represented by a floating-point value.
Immediately you can write an outline of the function:

def distance(x1, y1, x2, y2):

 return 0.0

Obviously, this version doesn’t compute distances; it always
returns zero. But it is syntactically correct, and it runs,
which means that you can test it before you make it more
complicated.
To test the new function, call it with sample arguments:

>>> distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and
the vertical distance is 4; that way, the result is 5, the
hypotenuse of a 3-4-5 triangle. When testing a function, it is
useful to know the right answer.
At this point we have confirmed that the function is
syntactically correct, and we can start adding code to the
body. A reasonable next step is to find the differences

 and . The next version stores those values in
temporary variables and prints them:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 print('dx is', dx)

 print('dy is', dy)

 return 0.0

If the function is working, it should display dx is 3 and dy
is 4. If so, we know that the function is getting the right

arguments and performing the first computation correctly.
If not, there are only a few lines to check.
Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 print('dsquared is: ', dsquared)

 return 0.0

Again, you would run the program at this stage and check
the output (which should be 25). Finally, you can use
math.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 result = math.sqrt(dsquared)

 return result

If that works correctly, you are done. Otherwise, you might
want to print the value of result before the return
statement.
The final version of the function doesn’t display anything
when it runs; it only returns a value. The print statements
we wrote are useful for debugging, but once you get the
function working, you should remove them. Code like that
is called scaffolding because it is helpful for building the
program but is not part of the final product.
When you start out, you should add only a line or two of
code at a time. As you gain more experience, you might find
yourself writing and debugging bigger chunks. Either way,
incremental development can save you a lot of debugging
time.

The key aspects of the process are:
1. Start with a working program and make small

incremental changes. At any point, if there is an error,
you should have a good idea where it is.

2. Use variables to hold intermediate values so you can
display and check them.

3. Once the program is working, you might want to
remove some of the scaffolding or consolidate multiple
statements into compound expressions, but only if it
does not make the program difficult to read.

As an exercise, use incremental development to write a
function called hypotenuse that returns the length of the
hypotenuse of a right triangle given the lengths of the other
two legs as arguments. Record each stage of the
development process as you go.

Composition

As you should expect by now, you can call one function
from within another. As an example, we’ll write a function
that takes two points, the center of the circle and a point on
the perimeter, and computes the area of the circle.
Assume that the center point is stored in the variables xc
and yc, and the perimeter point is in xp and yp. The first
step is to find the radius of the circle, which is the distance
between the two points. We just wrote a function, distance,
that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius;
we just wrote that, too:

result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):

 radius = distance(xc, yc, xp, yp)

 result = area(radius)

 return result

The temporary variables radius and result are useful for
development and debugging, but once the program is
working, we can make it more concise by composing the
function calls:

def circle_area(xc, yc, xp, yp):

 return area(distance(xc, yc, xp, yp))

Boolean Functions

Functions can return booleans, which is often convenient
for hiding complicated tests inside functions. For example:

def is_divisible(x, y):

 if x % y == 0:

 return True

 else:

 return False

It is common to give boolean functions names that sound
like yes/no questions; is_divisible returns either True or
False to indicate whether x is divisible by y.
Here is an example:

>>> is_divisible(6, 4)

False

>>> is_divisible(6, 3)

True

The result of the == operator is a boolean, so we can write
the function more concisely by returning it directly:

def is_divisible(x, y):

 return x % y == 0

Boolean functions are often used in conditional statements:

if is_divisible(x, y):

 print('x is divisible by y')

It might be tempting to write something like:

if is_divisible(x, y) == True:

 print('x is divisible by y')

But the extra comparison is unnecessary.
As an exercise, write a function is_between(x, y, z) that
returns True if or False otherwise.

More Recursion

We have only covered a small subset of Python, but you
might be interested to know that this subset is a complete

programming language, which means that anything that
can be computed can be expressed in this language. Any
program ever written could be rewritten using only the
language features you have learned so far (actually, you
would need a few commands to control devices like the
mouse, disks, etc., but that’s all).
Proving that claim is a nontrivial exercise first
accomplished by Alan Turing, one of the first computer
scientists (some would argue that he was a mathematician,
but a lot of early computer scientists started as

mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of
the Turing Thesis, I recommend Michael Sipser’s book
Introduction to the Theory of Computation (Course
Technology, 2012).
To give you an idea of what you can do with the tools you
have learned so far, we’ll evaluate a few recursively defined
mathematical functions. A recursive definition is similar to
a circular definition, in the sense that the definition
contains a reference to the thing being defined. A truly
circular definition is not very useful:
vorpal:

An adjective used to describe something that is vorpal.
If you saw that definition in the dictionary, you might be
annoyed. On the other hand, if you looked up the definition
of the factorial function, denoted with the symbol !, you
might get something like this:

This definition says that the factorial of 0 is 1, and the
factorial of any other value, n, is n multiplied by the
factorial of n-1.
So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!.
Putting it all together, 3! equals 3 times 2 times 1 times 1,
which is 6.
If you can write a recursive definition of something, you
can write a Python program to evaluate it. The first step is

to decide what the parameters should be. In this case it
should be clear that factorial takes an integer:

def factorial(n):

If the argument happens to be 0, all we have to do is return
1:

def factorial(n):

 if n == 0:

 return 1

Otherwise, and this is the interesting part, we have to make
a recursive call to find the factorial of n-1 and then multiply
it by n:

def factorial(n):

 if n == 0:

 return 1

 else:

 recurse = factorial(n-1)

 result = n * recurse

 return result

The flow of execution for this program is similar to the flow
of countdown in “Recursion”. If we call factorial with the
value 3:
Since 3 is not 0, we take the second branch and calculate
the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate

the factorial of n-1...

Since 1 is not 0, we take the second branch and calculate the factorial of

n-1...

Since 0 equals 0, we take the first branch and return 1 without making

any more recursive calls.

The return value, 1, is multiplied by n, which is 1, and the result is

returned.

The return value, 1, is multiplied by n, which is 2, and the

result is returned.

The return value (2) is multiplied by n, which is 3, and the
result, 6, becomes the return value of the function call that
started the whole process.
Figure 6-1 shows what the stack diagram looks like for this
sequence of function calls.

Figure 6-1. Stack diagram.

The return values are shown being passed back up the
stack. In each frame, the return value is the value of result,
which is the product of n and recurse.

In the last frame, the local variables recurse and result do
not exist, because the branch that creates them does not
run.

Leap of Faith

Following the flow of execution is one way to read
programs, but it can quickly become overwhelming. An
alternative is what I call the “leap of faith”. When you come
to a function call, instead of following the flow of execution,
you assume that the function works correctly and returns
the right result.
In fact, you are already practicing this leap of faith when
you use built-in functions. When you call math.cos or
math.exp, you don’t examine the bodies of those functions.
You just assume that they work because the people who
wrote the built-in functions were good programmers.
The same is true when you call one of your own functions.
For example, in “Boolean Functions”, we wrote a function
called is_divisible that determines whether one number is
divisible by another. Once we have convinced ourselves
that this function is correct—by examining the code and
testing—we can use the function without looking at the
body again.
The same is true of recursive programs. When you get to
the recursive call, instead of following the flow of
execution, you should assume that the recursive call works
(returns the correct result) and then ask yourself,
“Assuming that I can find the factorial of n-1, can I compute
the factorial of n?” It is clear that you can, by multiplying
by n.

Of course, it’s a bit strange to assume that the function
works correctly when you haven’t finished writing it, but
that’s why it’s called a leap of faith!

One More Example

After factorial, the most common example of a recursively
defined mathematical function is fibonacci, which has the
following definition (see
http://en.wikipedia.org/wiki/Fibonacci_number):

Translated into Python, it looks like this:

def fibonacci (n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for
fairly small values of n, your head explodes. But according
to the leap of faith, if you assume that the two recursive
calls work correctly, then it is clear that you get the right
result by adding them together.

Checking Types

What happens if we call factorial and give it 1.5 as an
argument?

http://en.wikipedia.org/wiki/Fibonacci_number

>>> factorial(1.5)

RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. How can that be? The
function has a base case—when n == 0. But if n is not an
integer, we can miss the base case and recurse forever.
In the first recursive call, the value of n is 0.5. In the next, it
is -0.5. From there, it gets smaller (more negative), but it
will never be 0.
We have two choices. We can try to generalize the factorial
function to work with floating-point numbers, or we can
make factorial check the type of its argument. The first
option is called the gamma function and it’s a little beyond
the scope of this book. So we’ll go for the second.
We can use the built-in function isinstance to verify the type
of the argument. While we’re at it, we can also make sure
the argument is positive:

def factorial (n):

 if not isinstance(n, int):

 print('Factorial is only defined for integers.')

 return None

 elif n < 0:

 print('Factorial is not defined for negative integers.')

 return None

 elif n == 0:

 return 1

 else:

 return n * factorial(n-1)

The first base case handles nonintegers; the second
handles negative integers. In both cases, the program
prints an error message and returns None to indicate that
something went wrong:

>>> factorial('fred')

Factorial is only defined for integers.

None

>>> factorial(-2)

Factorial is not defined for negative integers.

None

If we get past both checks, we know that n is positive or
zero, so we can prove that the recursion terminates.
This program demonstrates a pattern sometimes called a
guardian. The first two conditionals act as guardians,
protecting the code that follows from values that might
cause an error. The guardians make it possible to prove the
correctness of the code.
In “Reverse Lookup” we will see a more flexible alternative
to printing an error message: raising an exception.

Debugging

Breaking a large program into smaller functions creates
natural checkpoints for debugging. If a function is not
working, there are three possibilities to consider:

There is something wrong with the arguments the
function is getting; a precondition is violated.
There is something wrong with the function; a
postcondition is violated.
There is something wrong with the return value or the
way it is being used.

To rule out the first possibility, you can add a print
statement at the beginning of the function and display the
values of the parameters (and maybe their types). Or you
can write code that checks the preconditions explicitly.
If the parameters look good, add a print statement before
each return statement and display the return value. If

possible, check the result by hand. Consider calling the
function with values that make it easy to check the result
(as in “Incremental Development”).
If the function seems to be working, look at the function
call to make sure the return value is being used correctly
(or used at all!).
Adding print statements at the beginning and end of a
function can help make the flow of execution more visible.
For example, here is a version of factorial with print
statements:

def factorial(n):

 space = ' ' * (4 * n)

 print(space, 'factorial', n)

 if n == 0:

 print(space, 'returning 1')

 return 1

 else:

 recurse = factorial(n-1)

 result = n * recurse

 print(space, 'returning', result)

 return result

space is a string of space characters that controls the
indentation of the output. Here is the result of factorial(4) :

 factorial 4

 factorial 3

 factorial 2

 factorial 1

 factorial 0

 returning 1

 returning 1

 returning 2

 returning 6

 returning 24

If you are confused about the flow of execution, this kind of
output can be helpful. It takes some time to develop

effective scaffolding, but a little bit of scaffolding can save
a lot of debugging.

Glossary

temporary variable:
A variable used to store an intermediate value in a
complex calculation.

dead code:
Part of a program that can never run, often because it
appears after a return statement.

incremental development:
A program development plan intended to avoid
debugging by adding and testing only a small amount of
code at a time.

scaffolding:
Code that is used during program development but is
not part of the final version.

guardian:
A programming pattern that uses a conditional
statement to check for and handle circumstances that
might cause an error.

Exercises

Exercise 6-1.

Draw a stack diagram for the following program. What
does the program print?

def b(z):

 prod = a(z, z)

 print(z, prod)

 return prod

def a(x, y):

 x = x + 1

 return x * y

def c(x, y, z):

 total = x + y + z

 square = b(total)**2

 return square

x = 1

y = x + 1

print(c(x, y+3, x+y))

Exercise 6-2.

The Ackermann function, , is defined:

See http://en.wikipedia.org/wiki/Ackermann_function. Write
a function named ack that evaluates the Ackermann
function. Use your function to evaluate ack(3, 4), which
should be 125. What happens for larger values of m and n?
Solution: http://thinkpython2.com/code/ackermann.py.

Exercise 6-3.

A palindrome is a word that is spelled the same backward
and forward, like “noon” and “redivider”. Recursively, a
word is a palindrome if the first and last letters are the
same and the middle is a palindrome.
The following are functions that take a string argument and
return the first, last, and middle letters:

http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython2.com/code/ackermann.py

def first(word):

 return word[0]

def last(word):

 return word[-1]

def middle(word):

 return word[1:-1]

We’ll see how they work in Chapter 8.
1. Type these functions into a file named palindrome.py

and test them out. What happens if you call middle with
a string with two letters? One letter? What about the
empty string, which is written '' and contains no
letters?

2. Write a function called is_palindrome that takes a string
argument and returns True if it is a palindrome and
False otherwise. Remember that you can use the built-
in function len to check the length of a string.

Solution: http://thinkpython2.com/code/palindrome_soln.py.

Exercise 6-4.

A number, a, is a power of b if it is divisible by b and a/b is
a power of b. Write a function called is_power that takes
parameters a and b and returns True if a is a power of b.
Note: you will have to think about the base case.

Exercise 6-5.

The greatest common divisor (GCD) of a and b is the
largest number that divides both of them with no
remainder.
One way to find the GCD of two numbers is based on the
observation that if r is the remainder when a is divided by

http://thinkpython2.com/code/palindrome_soln.py

b, then . As a base case, we can
use .
Write a function called gcd that takes parameters a and b
and returns their greatest common divisor.
Credit: This exercise is based on an example from Abelson
and Sussman’s Structure and Interpretation of Computer

Programs (MIT Press, 1996).

Chapter 7. Iteration

This chapter is about iteration, which is the ability to run a
block of statements repeatedly. We saw a kind of iteration,
using recursion, in “Recursion”. We saw another kind,
using a for loop, in “Simple Repetition”. In this chapter
we’ll see yet another kind, using a while statement. But first
I want to say a little more about variable assignment.

Reassignment

As you may have discovered, it is legal to make more than
one assignment to the same variable. A new assignment
makes an existing variable refer to a new value (and stop
referring to the old value).

>>> x = 5

>>> x

5

>>> x = 7

>>> x

7

The first time we display x, its value is 5; the second time,
its value is 7.
Figure 7-1 shows what reassignment looks like in a state
diagram.
At this point I want to address a common source of
confusion. Because Python uses the equal sign (=) for
assignment, it is tempting to interpret a statement like a =
b as a mathematical proposition of equality; that is, the

claim that a and b are equal. But this interpretation is
wrong.
First, equality is a symmetric relationship and assignment
is not. For example, in mathematics, if a=7 then 7=a. But
in Python, the statement a = 7 is legal and 7 = a is not.
Also, in mathematics, a proposition of equality is either true
or false for all time. If a=b now, then a will always equal b.
In Python, an assignment statement can make two
variables equal, but they don’t have to stay that way:

>>> a = 5

>>> b = a # a and b are now equal

>>> a = 3 # a and b are no longer equal

>>> b

5

The third line changes the value of a but does not change
the value of b, so they are no longer equal.
Reassigning variables is often useful, but you should use it
with caution. If the values of variables change frequently, it
can make the code difficult to read and debug.

Figure 7-1. State diagram.

Updating Variables

A common kind of reassignment is an update, where the
new value of the variable depends on the old.

>>> x = x + 1

This means “get the current value of x, add one, and then
update x with the new value.”
If you try to update a variable that doesn’t exist, you get an
error, because Python evaluates the right side before it
assigns a value to x:

>>> x = x + 1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it,
usually with a simple assignment:

>>> x = 0

>>> x = x + 1

Updating a variable by adding 1 is called an increment;
subtracting 1 is called a decrement.

The while Statement

Computers are often used to automate repetitive tasks.
Repeating identical or similar tasks without making errors
is something that computers do well and people do poorly.
In a computer program, repetition is also called iteration.
We have already seen two functions, countdown and print_n,
that iterate using recursion. Because iteration is so
common, Python provides language features to make it
easier. One is the for statement we saw in “Simple
Repetition”. We’ll get back to that later.

Another is the while statement. Here is a version of
countdown that uses a while statement:

def countdown(n):

 while n > 0:

 print(n)

 n = n - 1

 print('Blastoff!')

You can almost read the while statement as if it were
English. It means, “While n is greater than 0, display the
value of n and then decrement n. When you get to 0, display
the word Blastoff!”
More formally, here is the flow of execution for a while
statement:

1. Determine whether the condition is true or false.
2. If false, exit the while statement and continue

execution at the next statement.
3. If the condition is true, run the body and then go back

to step 1.
This type of flow is called a loop because the third step
loops back around to the top.
The body of the loop should change the value of one or
more variables so that the condition becomes false
eventually and the loop terminates. Otherwise the loop will
repeat forever, which is called an infinite loop. An endless
source of amusement for computer scientists is the
observation that the directions on shampoo, “Lather, rinse,
repeat”, are an infinite loop.
In the case of countdown, we can prove that the loop
terminates: if n is zero or negative, the loop never runs.

Otherwise, n gets smaller each time through the loop, so
eventually we have to get to 0.
For some other loops, it is not so easy to tell. For example:

def sequence(n):

 while n != 1:

 print(n)

 if n % 2 == 0: # n is even

 n = n / 2

 else: # n is odd

 n = n*3 + 1

The condition for this loop is n != 1, so the loop will
continue until n is 1, which makes the condition false.
Each time through the loop, the program outputs the value
of n and then checks whether it is even or odd. If it is even,
n is divided by 2. If it is odd, the value of n is replaced with
n*3 + 1. For example, if the argument passed to sequence is
3, the resulting values of n are 3, 10, 5, 16, 8, 4, 2, 1.
Since n sometimes increases and sometimes decreases,
there is no obvious proof that n will ever reach 1, or that
the program terminates. For some particular values of n,
we can prove termination. For example, if the starting
value is a power of two, n will be even every time through
the loop until it reaches 1. The previous example ends with
such a sequence, starting with 16.
The hard question is whether we can prove that this
program terminates for all positive values of n. So far, no
one has been able to prove it or disprove it! (See
http://en.wikipedia.org/wiki/Collatz_conjecture.)
As an exercise, rewrite the function print_n from
“Recursion” using iteration instead of recursion.

http://en.wikipedia.org/wiki/Collatz_conjecture

break

Sometimes you don’t know it’s time to end a loop until you
get halfway through the body. In that case you can use the
break statement to jump out of the loop.
For example, suppose you want to take input from the user
until they type done. You could write:

while True:

 line = input('> ')

 if line == 'done':

 break

 print(line)

print('Done!')

The loop condition is True, which is always true, so the loop
runs until it hits the break statement.
Each time through, it prompts the user with an angle
bracket. If the user types done, the break statement exits the
loop. Otherwise the program echoes whatever the user
types and goes back to the top of the loop. Here’s a sample
run:

> not done

not done

> done

Done!

This way of writing while loops is common because you can
check the condition anywhere in the loop (not just at the
top) and you can express the stop condition affirmatively
(“stop when this happens”) rather than negatively (“keep
going until that happens”).

Square Roots

Loops are often used in programs that compute numerical
results by starting with an approximate answer and
iteratively improving it.
For example, one way of computing square roots is
Newton’s method. Suppose that you want to know the
square root of a. If you start with almost any estimate, x,
you can compute a better estimate with the following
formula:

For example, if a is 4 and x is 3:

>>> a = 4

>>> x = 3

>>> y = (x + a/x) / 2

>>> y

2.16666666667

The result is closer to the correct answer (). If we
repeat the process with the new estimate, it gets even
closer:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00641025641

After a few more updates, the estimate is almost exact:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00001024003

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00000000003

In general we don’t know ahead of time how many steps it
takes to get to the right answer, but we know when we get
there because the estimate stops changing:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.0

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.0

When y == x, we can stop. Here is a loop that starts with an
initial estimate, x, and improves it until it stops changing:

while True:

 print(x)

 y = (x + a/x) / 2

 if y == x:

 break

 x = y

For most values of a this works fine, but in general it is
dangerous to test float equality. Floating-point values are
only approximately right: most rational numbers, like 1/3,
and irrational numbers, like , can’t be represented
exactly with a float.
Rather than checking whether x and y are exactly equal, it
is safer to use the built-in function abs to compute the
absolute value, or magnitude, of the difference between
them:

 if abs(y-x) < epsilon:

 break

Where epsilon has a value, like 0.0000001, that determines
how close is close enough.

Algorithms

Newton’s method is an example of an algorithm: it is a
mechanical process for solving a category of problems (in
this case, computing square roots).
To understand what an algorithm is, it might help to start
with something that is not an algorithm. When you learned
to multiply single-digit numbers, you probably memorized
the multiplication table. In effect, you memorized 100
specific solutions. That kind of knowledge is not
algorithmic.
But if you were “lazy”, you might have learned a few tricks.
For example, to find the product of n and 9, you can write
n-1 as the first digit and 10-n as the second digit. This trick
is a general solution for multiplying any single-digit number
by 9. That’s an algorithm!
Similarly, the techniques you learned for addition with
carrying, subtraction with borrowing, and long division are
all algorithms. One of the characteristics of algorithms is
that they do not require any intelligence to carry out. They
are mechanical processes where each step follows from the
last according to a simple set of rules.
Executing algorithms is boring, but designing them is
interesting, intellectually challenging, and a central part of
computer science.
Some of the things that people do naturally, without
difficulty or conscious thought, are the hardest to express

algorithmically. Understanding natural language is a good
example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an
algorithm.

Debugging

As you start writing bigger programs, you might find
yourself spending more time debugging. More code means
more chances to make an error and more places for bugs to
hide.
One way to cut your debugging time is “debugging by
bisection”. For example, if there are 100 lines in your
program and you check them one at a time, it would take
100 steps.
Instead, try to break the problem in half. Look at the
middle of the program, or near it, for an intermediate value
you can check. Add a print statement (or something else
that has a verifiable effect) and run the program.
If the mid-point check is incorrect, there must be a problem
in the first half of the program. If it is correct, the problem
is in the second half.
Every time you perform a check like this, you halve the
number of lines you have to search. After six steps (which
is fewer than 100), you would be down to one or two lines
of code, at least in theory.
In practice it is not always clear what the “middle of the
program” is and not always possible to check it. It doesn’t
make sense to count lines and find the exact midpoint.
Instead, think about places in the program where there
might be errors and places where it is easy to put a check.

Then choose a spot where you think the chances are about
the same that the bug is before or after the check.

Glossary

reassignment:
Assigning a new value to a variable that already exists.

update:
An assignment where the new value of the variable
depends on the old.

initialization:
An assignment that gives an initial value to a variable
that will be updated.

increment:
An update that increases the value of a variable (often
by one).

decrement:
An update that decreases the value of a variable.

iteration:
Repeated execution of a set of statements using either a
recursive function call or a loop.

infinite loop:
A loop in which the terminating condition is never
satisfied.

algorithm:
A general process for solving a category of problems.

Exercises

Exercise 7-1.

Copy the loop from “Square Roots” and encapsulate it in a
function called mysqrt that takes a as a parameter, chooses
a reasonable value of x, and returns an estimate of the
square root of a.
To test it, write a function named test_square_root that
prints a table like this:
a mysqrt(a) math.sqrt(a) diff

- --------- ------------ ----

1.0 1.0 1.0 0.0

2.0 1.41421356237 1.41421356237 2.22044604925e-16

3.0 1.73205080757 1.73205080757 0.0

4.0 2.0 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16

9.0 3.0 3.0 0.0

The first column is a number, a; the second column is the
square root of a computed with mysqrt; the third column is
the square root computed by math.sqrt; the fourth column is
the absolute value of the difference between the two
estimates.

Exercise 7-2.

The built-in function eval takes a string and evaluates it
using the Python interpreter. For example:
>>> eval('1 + 2 * 3')

7

>>> import math

>>> eval('math.sqrt(5)')

2.2360679774997898

>>> eval('type(math.pi)')

<class 'float'>

Write a function called eval_loop that iteratively prompts
the user, takes the resulting input and evaluates it using
eval, and prints the result.
It should continue until the user enters 'done', and then
return the value of the last expression it evaluated.

Exercise 7-3.

The mathematician Srinivasa Ramanujan found an infinite
series that can be used to generate a numerical
approximation of :

Write a function called estimate_pi that uses this formula to
compute and return an estimate of π. It should use a while
loop to compute terms of the summation until the last term
is smaller than 1e-15 (which is Python notation for).
You can check the result by comparing it to math.pi.
Solution: http://thinkpython2.com/code/pi.py.

http://thinkpython2.com/code/pi.py

Chapter 8. Strings

Strings are not like integers, floats, and booleans. A string
is a sequence, which means it is an ordered collection of
other values. In this chapter you’ll see how to access the
characters that make up a string, and you’ll learn about
some of the methods strings provide.

A String Is a Sequence

A string is a sequence of characters. You can access the
characters one at a time with the bracket operator:

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement selects character number 1 from
fruit and assigns it to letter.
The expression in brackets is called an index. The index
indicates which character in the sequence you want (hence
the name).
But you might not get what you expect:

>>> letter

'a'

For most people, the first letter of 'banana' is b, not a. But
for computer scientists, the index is an offset from the
beginning of the string, and the offset of the first letter is
zero.

>>> letter = fruit[0]

>>> letter

'b'

So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th
letter (“one-eth”), and n is the 2th letter (“two-eth”).
As an index, you can use an expression that contains
variables and operators:

>>> i = 1

>>> fruit[i]

'a'

>>> fruit[i+1]

'n'

But the value of the index has to be an integer. Otherwise
you get:

>>> letter = fruit[1.5]

TypeError: string indices must be integers

len

len is a built-in function that returns the number of
characters in a string:

>>> fruit = 'banana'

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to
try something like this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in
'banana' with the index 6. Since we started counting at
zero, the six letters are numbered 0 to 5. To get the last
character, you have to subtract 1 from length:

>>> last = fruit[length-1]

>>> last

'a'

Or you can use negative indices, which count backward
from the end of the string. The expression fruit[-1] yields
the last letter, fruit[-2] yields the second to last, and so on.

Traversal with a for Loop

A lot of computations involve processing a string one
character at a time. Often they start at the beginning,
select each character in turn, do something to it, and
continue until the end. This pattern of processing is called
a traversal. One way to write a traversal is with a while
loop:

index = 0

while index < len(fruit):

 letter = fruit[index]

 print(letter)

 index = index + 1

This loop traverses the string and displays each letter on a
line by itself. The loop condition is index < len(fruit), so
when index is equal to the length of the string, the condition
is false, and the body of the loop doesn’t run. The last
character accessed is the one with the index len(fruit)-1,
which is the last character in the string.

As an exercise, write a function that takes a string as an
argument and displays the letters backward, one per line.
Another way to write a traversal is with a for loop:

for letter in fruit:

 print(letter)

Each time through the loop, the next character in the string
is assigned to the variable letter. The loop continues until
no characters are left.
The following example shows how to use concatenation
(string addition) and a for loop to generate an abecedarian
series (that is, in alphabetical order). In Robert
McCloskey’s book Make Way for Ducklings, the names of
the ducklings are Jack, Kack, Lack, Mack, Nack, Ouack,
Pack, and Quack. This loop outputs these names in order:

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:

 print(letter + suffix)

The output is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of course, that’s not quite right because “Ouack” and
“Quack” are misspelled. As an exercise, modify the
program to fix this error.

String Slices

A segment of a string is called a slice. Selecting a slice is
similar to selecting a character:

>>> s = 'Monty Python'

>>> s[0:5]

'Monty'

>>> s[6:12]

'Python'

The operator [n:m] returns the part of the string from the
“n-eth” character to the “m-eth” character, including the
first but excluding the last. This behavior is
counterintuitive, but it might help to imagine the indices
pointing between the characters, as in Figure 8-1.

Figure 8-1. Slice indices.

If you omit the first index (before the colon), the slice starts
at the beginning of the string. If you omit the second index,
the slice goes to the end of the string:

>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

If the first index is greater than or equal to the second the
result is an empty string, represented by two quotation
marks:

>>> fruit = 'banana'

>>> fruit[3:3]

''

An empty string contains no characters and has length 0,
but other than that, it is the same as any other string.
Continuing this example, what do you think fruit[:]
means? Try it and see.

Strings Are Immutable

It is tempting to use the [] operator on the left side of an
assignment, with the intention of changing a character in a
string. For example:

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

The “object” in this case is the string and the “item” is the
character you tried to assign. For now, an object is the
same thing as a value, but we will refine that definition
later (“Objects and Values”).
The reason for the error is that strings are immutable,
which means you can’t change an existing string. The best
you can do is create a new string that is a variation on the
original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> new_greeting

'Jello, world!'

This example concatenates a new first letter onto a slice of
greeting. It has no effect on the original string.

Searching

What does the following function do?

def find(word, letter):

 index = 0

 while index < len(word):

 if word[index] == letter:

 return index

 index = index + 1

 return -1

In a sense, find is the inverse of the [] operator. Instead of
taking an index and extracting the corresponding
character, it takes a character and finds the index where
that character appears. If the character is not found, the
function returns -1.
This is the first example we have seen of a return statement
inside a loop. If word[index] == letter, the function breaks
out of the loop and returns immediately.
If the character doesn’t appear in the string, the program
exits the loop normally and returns -1.
This pattern of computation—traversing a sequence and
returning when we find what we are looking for—is called a
search.
As an exercise, modify find so that it has a third parameter:
the index in word where it should start looking.

Looping and Counting

The following program counts the number of times the
letter a appears in a string:

word = 'banana'

count = 0

for letter in word:

 if letter == 'a':

 count = count + 1

print(count)

This program demonstrates another pattern of computation
called a counter. The variable count is initialized to 0 and
then incremented each time an a is found. When the loop
exits, count contains the result—the total number of a’s.
As an exercise, encapsulate this code in a function named
count, and generalize it so that it accepts the string and the
letter as arguments.
Then rewrite the function so that instead of traversing the
string, it uses the three-parameter version of find from the
previous section.

String Methods

Strings provide methods that perform a variety of useful
operations. A method is similar to a function—it takes
arguments and returns a value—but the syntax is different.
For example, the method upper takes a string and returns a
new string with all uppercase letters.
Instead of the function syntax upper(word), it uses the
method syntax word.upper():

>>> word = 'banana'

>>> new_word = word.upper()

>>> new_word

'BANANA'

This form of dot notation specifies the name of the method,
upper, and the name of the string to apply the method to,
word. The empty parentheses indicate that this method
takes no arguments.
A method call is called an invocation; in this case, we
would say that we are invoking upper on word.
As it turns out, there is a string method named find that is
remarkably similar to the function we wrote:

>>> word = 'banana'

>>> index = word.find('a')

>>> index

1

In this example, we invoke find on word and pass the letter
we are looking for as a parameter.
Actually, the find method is more general than our
function; it can find substrings, not just characters:

>>> word.find('na')

2

By default, find starts at the beginning of the string, but it
can take a second argument, the index where it should
start:

>>> word.find('na', 3)

4

This is an example of an optional argument. find can also
take a third argument, the index where it should stop:

>>> name = 'bob'

>>> name.find('b', 1, 2)

-1

This search fails because b does not appear in the index
range from 1 to 2, not including 2. Searching up to, but not
including, the second index makes find consistent with the
slice operator.

The in Operator

The word in is a boolean operator that takes two strings
and returns True if the first appears as a substring in the
second:

>>> 'a' in 'banana'

True

>>> 'seed' in 'banana'

False

For example, the following function prints all the letters
from word1 that also appear in word2:

def in_both(word1, word2):

 for letter in word1:

 if letter in word2:

 print(letter)

With well-chosen variable names, Python sometimes reads
like English. You could read this loop, “for (each) letter in
(the first) word, if (the) letter (appears) in (the second)
word, print (the) letter.”
Here’s what you get if you compare apples and oranges:

>>> in_both('apples', 'oranges')

a

e

s

String Comparison

The relational operators work on strings. To see if two
strings are equal:

if word == 'banana':

 print('All right, bananas.')

Other relational operations are useful for putting words in
alphabetical order:

if word < 'banana':

 print('Your word, ' + word + ', comes before banana.')

elif word > 'banana':

 print('Your word, ' + word + ', comes after banana.')

else:

 print('All right, bananas.')

Python does not handle uppercase and lowercase letters
the same way people do. All the uppercase letters come
before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings
to a standard format, such as all lowercase, before
performing the comparison. Keep that in mind in case you
have to defend yourself against a man armed with a
Pineapple.

Debugging

When you use indices to traverse the values in a sequence,
it is tricky to get the beginning and end of the traversal
right. Here is a function that is supposed to compare two
words and return True if one of the words is the reverse of
the other, but it contains two errors:

def is_reverse(word1, word2):

 if len(word1) != len(word2):

 return False

 i = 0

 j = len(word2)

 while j > 0:

 if word1[i] != word2[j]:

 return False

 i = i+1

 j = j-1

 return True

The first if statement checks whether the words are the
same length. If not, we can return False immediately.
Otherwise, for the rest of the function, we can assume that
the words are the same length. This is an example of the
guardian pattern in “Checking Types”.
i and j are indices: i traverses word1 forward while j
traverses word2 backward. If we find two letters that don’t
match, we can return False immediately. If we get through
the whole loop and all the letters match, we return True.
If we test this function with the words “pots” and “stop”,
we expect the return value True, but we get an IndexError:

>>> is_reverse('pots', 'stop')

...

 File "reverse.py", line 15, in is_reverse

 if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print
the values of the indices immediately before the line where
the error appears.

 while j > 0:

 print(i, j) # print here

 if word1[i] != word2[j]:

 return False

 i = i+1

 j = j-1

Now when I run the program again, I get more information:

>>> is_reverse('pots', 'stop')

0 4

...

IndexError: string index out of range

The first time through the loop, the value of j is 4, which is
out of range for the string 'pots'. The index of the last
character is 3, so the initial value for j should be
len(word2)-1.
If I fix that error and run the program again, I get:

>>> is_reverse('pots', 'stop')

0 3

1 2

2 1

True

This time we get the right answer, but it looks like the loop
only ran three times, which is suspicious. To get a better
idea of what is happening, it is useful to draw a state
diagram. During the first iteration, the frame for is_reverse
is shown in Figure 8-2.

Figure 8-2. State diagram.

I took some license by arranging the variables in the frame
and adding dotted lines to show that the values of i and j
indicate characters in word1 and word2.
Starting with this diagram, run the program on paper,
changing the values of i and j during each iteration. Find
and fix the second error in this function.

Glossary

object:
Something a variable can refer to. For now, you can use
“object” and “value” interchangeably.

sequence:
An ordered collection of values where each value is
identified by an integer index.

item:
One of the values in a sequence.

index:
An integer value used to select an item in a sequence,
such as a character in a string. In Python indices start
from 0.

slice:
A part of a string specified by a range of indices.

empty string:
A string with no characters and length 0, represented by
two quotation marks.

immutable:
The property of a sequence whose items cannot be
changed.

traverse:
To iterate through the items in a sequence, performing a
similar operation on each.

search:
A pattern of traversal that stops when it finds what it is
looking for.

counter:
A variable used to count something, usually initialized to
zero and then incremented.

invocation:
A statement that calls a method.

optional argument:
A function or method argument that is not required.

Exercises

Exercise 8-1.

Read the documentation of the string methods at
http://docs.python.org/3/library/stdtypes.html#string-

http://docs.python.org/3/library/stdtypes.html#string-methods

methods. You might want to experiment with some of them
to make sure you understand how they work. strip and
replace are particularly useful.
The documentation uses a syntax that might be confusing.
For example, in find(sub[, start[, end]]), the brackets
indicate optional arguments. So sub is required, but start is
optional, and if you include start, then end is optional.

Exercise 8-2.

There is a string method called count that is similar to the
function in “Looping and Counting”. Read the
documentation of this method and write an invocation that
counts the number of a’s in 'banana'.

Exercise 8-3.

A string slice can take a third index that specifies the “step
size”; that is, the number of spaces between successive
characters. A step size of 2 means every other character; 3
means every third, etc.
>>> fruit = 'banana'

>>> fruit[0:5:2]

'bnn'

A step size of -1 goes through the word backwards, so the
slice [::-1] generates a reversed string.
Use this idiom to write a one-line version of is_palindrome
from Exercise 6-3.

Exercise 8-4.

The following functions are all intended to check whether a
string contains any lowercase letters, but at least some of
them are wrong. For each function, describe what the
function actually does (assuming that the parameter is a
string).

http://docs.python.org/3/library/stdtypes.html#string-methods

def any_lowercase1(s):

 for c in s:

 if c.islower():

 return True

 else:

 return False

def any_lowercase2(s):

 for c in s:

 if 'c'.islower():

 return 'True'

 else:

 return 'False'

def any_lowercase3(s):

 for c in s:

 flag = c.islower()

 return flag

def any_lowercase4(s):

 flag = False

 for c in s:

 flag = flag or c.islower()

 return flag

def any_lowercase5(s):

 for c in s:

 if not c.islower():

 return False

 return True

Exercise 8-5.

A Caesar cypher is a weak form of encryption that involves
“rotating” each letter by a fixed number of places. To rotate
a letter means to shift it through the alphabet, wrapping
around to the beginning if necessary, so ‘A’ rotated by 3 is
‘D’ and ‘Z’ rotated by 1 is ‘A’.
To rotate a word, rotate each letter by the same amount.
For example, “cheer” rotated by 7 is “jolly” and “melon”
rotated by -10 is “cubed”. In the movie 2001: A Space

Odyssey, the ship computer is called HAL, which is IBM
rotated by -1.

Write a function called rotate_word that takes a string and
an integer as parameters, and returns a new string that
contains the letters from the original string rotated by the
given amount.
You might want to use the built-in function ord, which
converts a character to a numeric code, and chr, which
converts numeric codes to characters. Letters of the
alphabet are encoded in alphabetical order, so for example:
>>> ord('c') - ord('a')

2

Because 'c' is the two-eth letter of the alphabet. But
beware: the numeric codes for uppercase letters are
different.
Potentially offensive jokes on the Internet are sometimes
encoded in ROT13, which is a Caesar cypher with rotation
13. If you are not easily offended, find and decode some of
them.
Solution: http://thinkpython2.com/code/rotate.py.

http://thinkpython2.com/code/rotate.py

Chapter 9. Case Study:

Word Play

This chapter presents the second case study, which
involves solving word puzzles by searching for words that
have certain properties. For example, we’ll find the longest
palindromes in English and search for words whose letters
appear in alphabetical order. And I will present another
program development plan: reduction to a previously
solved problem.

Reading Word Lists

For the exercises in this chapter we need a list of English
words. There are lots of word lists available on the Web,
but the one most suitable for our purpose is one of the
word lists collected and contributed to the public domain
by Grady Ward as part of the Moby lexicon project (see
http://wikipedia.org/wiki/Moby_Project). It is a list of
113,809 official crosswords; that is, words that are
considered valid in crossword puzzles and other word
games. In the Moby collection, the filename is 113809of.fic;
you can download a copy, with the simpler name words.txt,
from http://thinkpython2.com/code/words.txt.
This file is in plain text, so you can open it with a text
editor, but you can also read it from Python. The built-in
function open takes the name of the file as a parameter and
returns a file object you can use to read the file.

>>> fin = open('words.txt')

http://wikipedia.org/wiki/Moby_Project
http://thinkpython2.com/code/words.txt

fin is a common name for a file object used for input. The
file object provides several methods for reading, including
readline, which reads characters from the file until it gets
to a newline and returns the result as a string:

>>> fin.readline()

'aa\r\n'

The first word in this particular list is “aa”, which is a kind
of lava. The sequence \r\n represents two whitespace
characters, a carriage return and a newline, that separate
this word from the next.
The file object keeps track of where it is in the file, so if you
call readline again, you get the next word:

>>> fin.readline()

'aah\r\n'

The next word is “aah”, which is a perfectly legitimate
word, so stop looking at me like that. Or, if it’s the
whitespace that’s bothering you, we can get rid of it with
the string method strip:

>>> line = fin.readline()

>>> word = line.strip()

>>> word

'aahed'

You can also use a file object as part of a for loop. This
program reads words.txt and prints each word, one per line:

fin = open('words.txt')

for line in fin:

 word = line.strip()

 print(word)

Exercises

There are solutions to these exercises in the next section.
You should at least attempt each one before you read the
solutions.
Exercise 9-1.

Write a program that reads words.txt and prints only the
words with more than 20 characters (not counting
whitespace).

Exercise 9-2.

In 1939 Ernest Vincent Wright published a 50,000-word
novel called Gadsby that does not contain the letter “e”.
Since “e” is the most common letter in English, that’s not
easy to do.
In fact, it is difficult to construct a solitary thought without
using that most common symbol. It is slow going at first,
but with caution and hours of training you can gradually
gain facility.
All right, I’ll stop now.
Write a function called has_no_e that returns True if the
given word doesn’t have the letter “e” in it.
Modify your program from the previous section to print
only the words that have no “e” and compute the
percentage of the words in the list that have no “e”.

Exercise 9-3.

Write a function named avoids that takes a word and a
string of forbidden letters, and that returns True if the word
doesn’t use any of the forbidden letters.
Modify your program to prompt the user to enter a string of
forbidden letters and then print the number of words that

don’t contain any of them. Can you find a combination of
five forbidden letters that excludes the smallest number of
words?

Exercise 9-4.

Write a function named uses_only that takes a word and a
string of letters, and that returns True if the word contains
only letters in the list. Can you make a sentence using only
the letters acefhlo? Other than “Hoe alfalfa?”

Exercise 9-5.

Write a function named uses_all that takes a word and a
string of required letters, and that returns True if the word
uses all the required letters at least once. How many words
are there that use all the vowels aeiou? How about aeiouy?

Exercise 9-6.

Write a function called is_abecedarian that returns True if
the letters in a word appear in alphabetical order (double
letters are okay). How many abecedarian words are there?

Search

All of the exercises in the previous section have something
in common; they can be solved with the search pattern we
saw in “Searching”. The simplest example is:

def has_no_e(word):

 for letter in word:

 if letter == 'e':

 return False

 return True

The for loop traverses the characters in word. If we find the
letter “e”, we can immediately return False; otherwise we
have to go to the next letter. If we exit the loop normally,
that means we didn’t find an “e”, so we return True.
You could write this function more concisely using the in
operator, but I started with this version because it
demonstrates the logic of the search pattern.
avoids is a more general version of has_no_e but it has the
same structure:

def avoids(word, forbidden):

 for letter in word:

 if letter in forbidden:

 return False

 return True

We can return False as soon as we find a forbidden letter; if
we get to the end of the loop, we return True.
uses_only is similar except that the sense of the condition is
reversed:

def uses_only(word, available):

 for letter in word:

 if letter not in available:

 return False

 return True

Instead of a list of forbidden letters, we have a list of
available letters. If we find a letter in word that is not in
available, we can return False.
uses_all is similar except that we reverse the role of the
word and the string of letters:

def uses_all(word, required):

 for letter in required:

 if letter not in word:

 return False

 return True

Instead of traversing the letters in word, the loop traverses
the required letters. If any of the required letters do not
appear in the word, we can return False.
If you were really thinking like a computer scientist, you
would have recognized that uses_all was an instance of a
previously solved problem, and you would have written:

def uses_all(word, required):

 return uses_only(required, word)

This is an example of a program development plan called
reduction to a previously solved problem, which means
that you recognize the problem you are working on as an
instance of a solved problem and apply an existing solution.

Looping with Indices

I wrote the functions in the previous section with for loops
because I only needed the characters in the strings; I didn’t
have to do anything with the indices.
For is_abecedarian we have to compare adjacent letters,
which is a little tricky with a for loop:

def is_abecedarian(word):

 previous = word[0]

 for c in word:

 if c < previous:

 return False

 previous = c

 return True

An alternative is to use recursion:

def is_abecedarian(word):

 if len(word) <= 1:

 return True

 if word[0] > word[1]:

 return False

 return is_abecedarian(word[1:])

Another option is to use a while loop:

def is_abecedarian(word):

 i = 0

 while i < len(word)-1:

 if word[i+1] < word[i]:

 return False

 i = i+1

 return True

The loop starts at i=0 and ends when i=len(word)-1. Each
time through the loop, it compares the ith character (which
you can think of as the current character) to the i+1th
character (which you can think of as the next).
If the next character is less than (alphabetically before) the
current one, then we have discovered a break in the
abecedarian trend, and we return False.
If we get to the end of the loop without finding a fault, then
the word passes the test. To convince yourself that the loop
ends correctly, consider an example like 'flossy'. The
length of the word is 6, so the last time the loop runs is
when i is 4, which is the index of the second-to-last
character. On the last iteration, it compares the second-to-
last character to the last, which is what we want.
Here is a version of is_palindrome (see Exercise 6-3) that
uses two indices: one starts at the beginning and goes up;
the other starts at the end and goes down.

def is_palindrome(word):

 i = 0

 j = len(word)-1

 while i<j:

 if word[i] != word[j]:

 return False

 i = i+1

 j = j-1

 return True

Or we could reduce to a previously solved problem and
write:

def is_palindrome(word):

 return is_reverse(word, word)

Using is_reverse from Figure 8-2.

Debugging

Testing programs is hard. The functions in this chapter are
relatively easy to test because you can check the results by
hand. Even so, it is somewhere between difficult and
impossible to choose a set of words that test for all possible
errors.
Taking has_no_e as an example, there are two obvious cases
to check: words that have an ‘e’ should return False, and
words that don’t should return True. You should have no
trouble coming up with one of each.
Within each case, there are some less obvious subcases.
Among the words that have an “e”, you should test words
with an “e” at the beginning, the end, and somewhere in
the middle. You should test long words, short words, and
very short words, like the empty string. The empty string is
an example of a special case, which is one of the non-
obvious cases where errors often lurk.

In addition to the test cases you generate, you can also test
your program with a word list like words.txt. By scanning
the output, you might be able to catch errors, but be
careful: you might catch one kind of error (words that
should not be included, but are) and not another (words
that should be included, but aren’t).
In general, testing can help you find bugs, but it is not easy
to generate a good set of test cases, and even if you do, you
can’t be sure your program is correct. According to a
legendary computer scientist:
Program testing can be used to show the presence of

bugs, but never to show their absence!

Edsger W. Dijkstra

Glossary

file object:
A value that represents an open file.

reduction to a previously solved problem:
A way of solving a problem by expressing it as an
instance of a previously solved problem.

special case:
A test case that is atypical or non-obvious (and less
likely to be handled correctly).

Exercises

Exercise 9-7.

This question is based on a Puzzler that was broadcast on
the radio program Car Talk

(http://www.cartalk.com/content/puzzlers):
Give me a word with three consecutive double letters. I’ll

give you a couple of words that almost qualify, but don’t.

For example, the word committee, c-o-m-m-i-t-t-e-e. It

would be great except for the ‘i’ that sneaks in there. Or

Mississippi: M-i-s-s-i-s-s-i-p-p-i. If you could take out those

i’s it would work. But there is a word that has three

consecutive pairs of letters and to the best of my

knowledge this may be the only word. Of course there are

probably 500 more but I can only think of one. What is

the word?

Write a program to find it.
Solution: http://thinkpython2.com/code/cartalk1.py.

Exercise 9-8.

Here’s another Car Talk Puzzler
(http://www.cartalk.com/content/puzzlers):
“I was driving on the highway the other day and I

happened to notice my odometer. Like most odometers, it

shows six digits, in whole miles only. So, if my car had

300,000 miles, for example, I’d see 3-0-0-0-0-0.

“Now, what I saw that day was very interesting. I noticed

that the last 4 digits were palindromic; that is, they read

the same forward as backward. For example, 5-4-4-5 is a

palindrome, so my odometer could have read 3-1-5-4-4-5.

“One mile later, the last 5 numbers were palindromic. For

example, it could have read 3-6-5-4-5-6. One mile after

that, the middle 4 out of 6 numbers were palindromic.

And you ready for this? One mile later, all 6 were

palindromic!

“The question is, what was on the odometer when I first

looked?”

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk1.py
http://www.cartalk.com/content/puzzlers

Write a Python program that tests all the six-digit numbers
and prints any numbers that satisfy these requirements.
Solution: http://thinkpython2.com/code/cartalk2.py.

Exercise 9-9.

Here’s another Car Talk Puzzler you can solve with a
search (http://www.cartalk.com/content/puzzlers):
“Recently I had a visit with my mom and we realized that

the two digits that make up my age when reversed

resulted in her age. For example, if she’s 73, I’m 37. We

wondered how often this has happened over the years

but we got sidetracked with other topics and we never

came up with an answer.

“When I got home I figured out that the digits of our ages

have been reversible six times so far. I also figured out

that if we’re lucky it would happen again in a few years,

and if we’re really lucky it would happen one more time

after that. In other words, it would have happened 8

times over all. So the question is, how old am I now?”

Write a Python program that searches for solutions to this
Puzzler. Hint: you might find the string method zfill
useful.
Solution: http://thinkpython2.com/code/cartalk3.py.

http://thinkpython2.com/code/cartalk2.py
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk3.py

Chapter 10. Lists

This chapter presents one of Python’s most useful built-in
types: lists. You will also learn more about objects and what
can happen when you have more than one name for the
same object.

A List Is a Sequence

Like a string, a list is a sequence of values. In a string, the
values are characters; in a list, they can be any type. The
values in a list are called elements or sometimes items.
There are several ways to create a new list; the simplest is
to enclose the elements in square brackets ([and]):

[10, 20, 30, 40]

['crunchy frog', 'ram bladder', 'lark vomit']

The first example is a list of four integers. The second is a
list of three strings. The elements of a list don’t have to be
the same type. The following list contains a string, a float,
an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is nested.
A list that contains no elements is called an empty list; you
can create one with empty brackets, [].
As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [42, 123]

[,]

>>> empty = []

>>> print(cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [42, 123] []

Lists Are Mutable

The syntax for accessing the elements of a list is the same
as for accessing the characters of a string—the bracket
operator. The expression inside the brackets specifies the
index. Remember that the indices start at 0:

>>> cheeses[0]

'Cheddar'

Unlike strings, lists are mutable. When the bracket
operator appears on the left side of an assignment, it
identifies the element of the list that will be assigned:

>>> numbers = [42, 123]

>>> numbers[1] = 5

>>> numbers

[42, 5]

The one-eth element of numbers, which used to be 123, is
now 5.
Figure 10-1 shows the state diagram for cheeses, numbers
and empty.

Figure 10-1. State diagram.

Lists are represented by boxes with the word “list” outside
and the elements of the list inside. cheeses refers to a list
with three elements indexed 0, 1 and 2. numbers contains
two elements; the diagram shows that the value of the
second element has been reassigned from 123 to 5. empty
refers to a list with no elements.
List indices work the same way as string indices:

Any integer expression can be used as an index.

If you try to read or write an element that does not exist,
you get an IndexError.
If an index has a negative value, it counts backward from
the end of the list.

The in operator also works on lists:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

Traversing a List

The most common way to traverse the elements of a list is
with a for loop. The syntax is the same as for strings:

for cheese in cheeses:

 print(cheese)

This works well if you only need to read the elements of the
list. But if you want to write or update the elements, you
need the indices. A common way to do that is to combine
the built-in functions range and len:

for i in range(len(numbers)):

 numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len
returns the number of elements in the list. range returns a
list of indices from 0 to n-1, where n is the length of the list.
Each time through the loop, i gets the index of the next
element. The assignment statement in the body uses i to
read the old value of the element and to assign the new
value.

A for loop over an empty list never runs the body:

for x in []:

 print('This never happens.')

Although a list can contain another list, the nested list still
counts as a single element. The length of this list is four:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

List Operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> c

[1, 2, 3, 4, 5, 6]

The * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second
example repeats the list [1, 2, 3] three times.

List Slices

The slice operator also works on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning.
If you omit the second, the slice goes to the end. So if you
omit both, the slice is a copy of the whole list:

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy
before performing operations that modify lists.
A slice operator on the left side of an assignment can
update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> t

['a', 'x', 'y', 'd', 'e', 'f']

List Methods

Python provides methods that operate on lists. For
example, append adds a new element to the end of a list:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> t

['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the
elements:

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> t1

['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.
sort arranges the elements of the list from low to high:

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> t

['a', 'b', 'c', 'd', 'e']

Most list methods are void; they modify the list and return
None. If you accidentally write t = t.sort(), you will be
disappointed with the result.

Map, Filter and Reduce

To add up all the numbers in a list, you can use a loop like
this:

def add_all(t):

 total = 0

 for x in t:

 total += x

 return total

total is initialized to 0. Each time through the loop, x gets
one element from the list. The += operator provides a short
way to update a variable. This augmented assignment

statement,

 total += x

is equivalent to

 total = total + x

As the loop runs, total accumulates the sum of the
elements; a variable used this way is sometimes called an
accumulator.
Adding up the elements of a list is such a common
operation that Python provides it as a built-in function, sum:

>>> t = [1, 2, 3]

>>> sum(t)

6

An operation like this that combines a sequence of
elements into a single value is sometimes called reduce.
Sometimes you want to traverse one list while building
another. For example, the following function takes a list of
strings and returns a new list that contains capitalized
strings:

def capitalize_all(t):

 res = []

 for s in t:

 res.append(s.capitalize())

 return res

res is initialized with an empty list; each time through the
loop, we append the next element. So res is another kind of
accumulator.
An operation like capitalize_all is sometimes called a map

because it “maps” a function (in this case the method
capitalize) onto each of the elements in a sequence.
Another common operation is to select some of the
elements from a list and return a sublist. For example, the
following function takes a list of strings and returns a list
that contains only the uppercase strings:

def only_upper(t):

 res = []

 for s in t:

 if s.isupper():

 res.append(s)

 return res

isupper is a string method that returns True if the string
contains only uppercase letters.
An operation like only_upper is called a filter because it
selects some of the elements and filters out the others.
Most common list operations can be expressed as a
combination of map, filter and reduce.

Deleting Elements

There are several ways to delete elements from a list. If you
know the index of the element you want, you can use pop:

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> t

['a', 'c']

>>> x

'b'

pop modifies the list and returns the element that was
removed. If you don’t provide an index, it deletes and
returns the last element.
If you don’t need the removed value, you can use the del
operator:

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> t

['a', 'c']

If you know the element you want to remove (but not the
index), you can use remove:

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> t

['a', 'c']

The return value from remove is None.
To remove more than one element, you can use del with a
slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> t

['a', 'f']

As usual, the slice selects all the elements up to but not
including the second index.

Lists and Strings

A string is a sequence of characters and a list is a sequence
of values, but a list of characters is not the same as a
string. To convert from a string to a list of characters, you
can use list:

>>> s = 'spam'

>>> t = list(s)

>>> t

['s', 'p', 'a', 'm']

Because list is the name of a built-in function, you should
avoid using it as a variable name. I also avoid l because it
looks too much like 1. So that’s why I use t.

The list function breaks a string into individual letters. If
you want to break a string into words, you can use the split
method:

>>> s = 'pining for the fjords'

>>> t = s.split()

>>> t

['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which
characters to use as word boundaries. The following
example uses a hyphen as a delimiter:

>>> s = 'spam-spam-spam'

>>> delimiter = '-'

>>> t = s.split(delimiter)

>>> t

['spam', 'spam', 'spam']

join is the inverse of split. It takes a list of strings and
concatenates the elements. join is a string method, so you
have to invoke it on the delimiter and pass the list as a
parameter:

>>> t = ['pining', 'for', 'the', 'fjords']

>>> delimiter = ' '

>>> s = delimiter.join(t)

>>> s

'pining for the fjords'

In this case the delimiter is a space character, so join puts
a space between words. To concatenate strings without
spaces, you can use the empty string, '', as a delimiter.

Objects and Values

If we run these assignment statements:

a = 'banana'

b = 'banana'

We know that a and b both refer to a string, but we don’t
know whether they refer to the same string. There are two
possible states, shown in Figure 10-2.

Figure 10-2. State diagram.

In one case, a and b refer to two different objects that have
the same value. In the second case, they refer to the same
object.
To check whether two variables refer to the same object,
you can use the is operator:

>>> a = 'banana'

>>> b = 'banana'

>>> a is b

True

In this example, Python only created one string object, and
both a and b refer to it. But when you create two lists, you
get two objects:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

So the state diagram looks like Figure 10-3.

Figure 10-3. State diagram.

In this case we would say that the two lists are equivalent,
because they have the same elements, but not identical,
because they are not the same object. If two objects are
identical, they are also equivalent, but if they are
equivalent, they are not necessarily identical.
Until now, we have been using “object” and “value”
interchangeably, but it is more precise to say that an object
has a value. If you evaluate [1, 2, 3], you get a list object
whose value is a sequence of integers. If another list has
the same elements, we say it has the same value, but it is
not the same object.

Aliasing

If a refers to an object and you assign b = a, then both
variables refer to the same object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The state diagram looks like Figure 10-4.

Figure 10-4. State diagram.

The association of a variable with an object is called a
reference. In this example, there are two references to the
same object.
An object with more than one reference has more than one
name, so we say that the object is aliased.
If the aliased object is mutable, changes made with one
alias affect the other:

>>> b[0] = 42

>>> a

[42, 2, 3]

Although this behavior can be useful, it is error-prone. In
general, it is safer to avoid aliasing when you are working
with mutable objects.
For immutable objects like strings, aliasing is not as much
of a problem. In this example:

a = 'banana'

b = 'banana'

It almost never makes a difference whether a and b refer to
the same string or not.

List Arguments

When you pass a list to a function, the function gets a
reference to the list. If the function modifies the list, the
caller sees the change. For example, delete_head removes
the first element from a list:

def delete_head(t):

 del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> letters

['b', 'c']

The parameter t and the variable letters are aliases for the
same object. The stack diagram looks like Figure 10-5.

Figure 10-5. Stack diagram.

Since the list is shared by two frames, I drew it between
them.
It is important to distinguish between operations that
modify lists and operations that create new lists. For
example, the append method modifies a list, but the +
operator creates a new list:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> t1

[1, 2, 3]

>>> t2

None

append modifies the list and returns None:

>>> t3 = t1 + [4]

>>> t1

[1, 2, 3]

>>> t3

[1, 2, 3, 4]

>>> t1

The + operator creates a new list and leaves the original list
unchanged.
This difference is important when you write functions that
are supposed to modify lists. For example, this function
does not delete the head of a list:

def bad_delete_head(t):

 t = t[1:] # WRONG!

The slice operator creates a new list and the assignment
makes t refer to it, but that doesn’t affect the caller.

>>> t4 = [1, 2, 3]

>>> bad_delete_head(t4)

>>> t4

[1, 2, 3]

At the beginning of bad_delete_head, t and t4 refer to the
same list. At the end, t refers to a new list, but t4 still
refers to the original, unmodified list.
An alternative is to write a function that creates and
returns a new list. For example, tail returns all but the first

element of a list:

def tail(t):

 return t[1:]

This function leaves the original list unmodified. Here’s
how it is used:

>>> letters = ['a', 'b', 'c']

>>> rest = tail(letters)

>>> rest

['b', 'c']

Debugging

Careless use of lists (and other mutable objects) can lead to
long hours of debugging. Here are some common pitfalls
and ways to avoid them:

1. Most list methods modify the argument and return
None. This is the opposite of the string methods, which
return a new string and leave the original alone.
If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Because sort returns None, the next operation you
perform with t is likely to fail.
Before using list methods and operators, you should
read the documentation carefully and then test them in
interactive mode.

2. Pick an idiom and stick with it.
Part of the problem with lists is that there are too
many ways to do things. For example, to remove an
element from a list, you can use pop, remove, del, or even
a slice assignment.
To add an element, you can use the append method or
the + operator. Assuming that t is a list and x is a list
element, these are correct:

t.append(x)

t = t + [x]

t += [x]

And these are wrong:

t.append([x]) # WRONG!

t = t.append(x) # WRONG!

t + [x] # WRONG!

t = t + x # WRONG!

Try out each of these examples in interactive mode to
make sure you understand what they do. Notice that
only the last one causes a runtime error; the other
three are legal, but they do the wrong thing.

3. Make copies to avoid aliasing.
If you want to use a method like sort that modifies the
argument, but you need to keep the original list as
well, you can make a copy:

>>> t = [3, 1, 2]

>>> t2 = t[:]

>>> t2.sort()

>>> t

[3, 1, 2]

>>> t2

[1, 2, 3]

In this example you could also use the built-in function
sorted, which returns a new, sorted list and leaves the
original alone:

>>> t2 = sorted(t)

>>> t

[3, 1, 2]

>>> t2

[1, 2, 3]

Glossary

list:
A sequence of values.

element:
One of the values in a list (or other sequence), also
called items.

nested list:
A list that is an element of another list.

accumulator:
A variable used in a loop to add up or accumulate a
result.

augmented assignment:
A statement that updates the value of a variable using
an operator like +=.

reduce:
A processing pattern that traverses a sequence and
accumulates the elements into a single result.

map:

A processing pattern that traverses a sequence and
performs an operation on each element.

filter:
A processing pattern that traverses a list and selects the
elements that satisfy some criterion.

object:
Something a variable can refer to. An object has a type
and a value.

equivalent:
Having the same value.

identical:
Being the same object (which implies equivalence).

reference:
The association between a variable and its value.

aliasing:
A circumstance where two or more variables refer to the
same object.

delimiter:
A character or string used to indicate where a string
should be split.

Exercises

You can download solutions to these exercises from from
http://thinkpython2.com/code/list_exercises.py.
Exercise 10-1.

http://thinkpython2.com/code/list_exercises.py

Write a function called nested_sum that takes a list of lists of
integers and adds up the elements from all of the nested
lists. For example:
>>> t = [[1, 2], [3], [4, 5, 6]]

>>> nested_sum(t)

21

Exercise 10-2.

Write a function called cumsum that takes a list of numbers
and returns the cumulative sum; that is, a new list where
the ith element is the sum of the first i+1 elements from
the original list. For example:
>>> t = [1, 2, 3]

>>> cumsum(t)

[1, 3, 6]

Exercise 10-3.

Write a function called middle that takes a list and returns a
new list that contains all but the first and last elements. For
example:
>>> t = [1, 2, 3, 4]

>>> middle(t)

[2, 3]

Exercise 10-4.

Write a function called chop that takes a list, modifies it by
removing the first and last elements, and returns None. For
example:
>>> t = [1, 2, 3, 4]

>>> chop(t)

>>> t

[2, 3]

Exercise 10-5.

Write a function called is_sorted that takes a list as a
parameter and returns True if the list is sorted in ascending
order and False otherwise. For example:

>>> is_sorted([1, 2, 2])

True

>>> is_sorted(['b', 'a'])

False

Exercise 10-6.

Two words are anagrams if you can rearrange the letters
from one to spell the other. Write a function called
is_anagram that takes two strings and returns True if they are
anagrams.

Exercise 10-7.

Write a function called has_duplicates that takes a list and
returns True if there is any element that appears more than
once. It should not modify the original list.

Exercise 10-8.

This exercise pertains to the so-called Birthday Paradox,
which you can read about at
http://en.wikipedia.org/wiki/Birthday_paradox.
If there are 23 students in your class, what are the chances
that two of you have the same birthday? You can estimate
this probability by generating random samples of 23
birthdays and checking for matches. Hint: you can generate
random birthdays with the randint function in the random
module.
You can download my solution from
http://thinkpython2.com/code/birthday.py.

Exercise 10-9.

Write a function that reads the file words.txt and builds a
list with one element per word. Write two versions of this
function, one using the append method and the other using
the idiom t = t + [x]. Which one takes longer to run? Why?

http://en.wikipedia.org/wiki/Birthday_paradox
http://thinkpython2.com/code/birthday.py

Solution: http://thinkpython2.com/code/wordlist.py.

Exercise 10-10.

To check whether a word is in the word list, you could use
the in operator, but it would be slow because it searches
through the words in order.
Because the words are in alphabetical order, we can speed
things up with a bisection search (also known as binary
search), which is similar to what you do when you look a
word up in the dictionary. You start in the middle and
check to see whether the word you are looking for comes
before the word in the middle of the list. If so, you search
the first half of the list the same way. Otherwise you search
the second half.
Either way, you cut the remaining search space in half. If
the word list has 113,809 words, it will take about 17 steps
to find the word or conclude that it’s not there.
Write a function called in_bisect that takes a sorted list and
a target value and returns the index of the value in the list
if it’s there, or None if it’s not.
Or you could read the documentation of the bisect module
and use that!
Solution: http://thinkpython2.com/code/inlist.py.

Exercise 10-11.

Two words are a “reverse pair” if each is the reverse of the
other. Write a program that finds all the reverse pairs in
the word list.
Solution: http://thinkpython2.com/code/reverse_pair.py.

Exercise 10-12.

http://thinkpython2.com/code/wordlist.py
http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/reverse_pair.py

Two words “interlock” if taking alternating letters from
each forms a new word. For example, “shoe” and “cold”
interlock to form “schooled”.
Solution: http://thinkpython2.com/code/interlock.py. Credit:
This exercise is inspired by an example at
http://puzzlers.org.

1. Write a program that finds all pairs of words that
interlock. Hint: don’t enumerate all pairs!

2. Can you find any words that are three-way interlocked;
that is, every third letter forms a word, starting from
the first, second or third?

http://thinkpython2.com/code/interlock.py
http://puzzlers.org/

Chapter 11. Dictionaries

This chapter presents another built-in type called a
dictionary. Dictionaries are one of Python’s best features;
they are the building blocks of many efficient and elegant
algorithms.

A Dictionary Is a Mapping

A dictionary is like a list, but more general. In a list, the
indices have to be integers; in a dictionary they can be
(almost) any type.
A dictionary contains a collection of indices, which are
called keys, and a collection of values. Each key is
associated with a single value. The association of a key and
a value is called a key-value pair or sometimes an item.
In mathematical language, a dictionary represents a
mapping from keys to values, so you can also say that each
key “maps to” a value. As an example, we’ll build a
dictionary that maps from English to Spanish words, so the
keys and the values are all strings.
The function dict creates a new dictionary with no items.
Because dict is the name of a built-in function, you should
avoid using it as a variable name.

>>> eng2sp = dict()

>>> eng2sp

{}

The squiggly brackets, {}, represent an empty dictionary.
To add items to the dictionary, you can use square

brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key 'one' to
the value 'uno'. If we print the dictionary again, we see a
key-value pair with a colon between the key and value:

>>> eng2sp

{'one': 'uno'}

This output format is also an input format. For example,
you can create a new dictionary with three items:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

But if you print eng2sp, you might be surprised:

>>> eng2sp

{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs might not be the same. If
you type the same example on your computer, you might
get a different result. In general, the order of items in a
dictionary is unpredictable.
But that’s not a problem because the elements of a
dictionary are never indexed with integer indices. Instead,
you use the keys to look up the corresponding values:

>>> eng2sp['two']

'dos'

The key 'two' always maps to the value 'dos' so the order of
the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

>>> eng2sp['four']

KeyError: 'four'

The len function works on dictionaries; it returns the
number of key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries, too; it tells you
whether something appears as a key in the dictionary
(appearing as a value is not good enough).

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

To see whether something appears as a value in a
dictionary, you can use the method values, which returns a
collection of values, and then use the in operator:

>>> vals = eng2sp.values()

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and
dictionaries. For lists, it searches the elements of the list in
order, as in “Searching”. As the list gets longer, the search
time gets longer in direct proportion.
For dictionaries, Python uses an algorithm called a
hashtable that has a remarkable property: the in operator
takes about the same amount of time no matter how many
items are in the dictionary. I explain how that’s possible in
“Hashtables”, but the explanation might not make sense
until you’ve read a few more chapters.

Dictionary as a Collection of Counters

Suppose you are given a string and you want to count how
many times each letter appears. There are several ways
you could do it:

1. You could create 26 variables, one for each letter of
the alphabet. Then you could traverse the string and,
for each character, increment the corresponding
counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you
could convert each character to a number (using the
built-in function ord), use the number as an index into
the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys
and counters as the corresponding values. The first
time you see a character, you would add an item to the
dictionary. After that you would increment the value of
an existing item.

Each of these options performs the same computation, but
each of them implements that computation in a different
way.
An implementation is a way of performing a computation;
some implementations are better than others. For example,
an advantage of the dictionary implementation is that we
don’t have to know ahead of time which letters appear in
the string and we only have to make room for the letters
that do appear.
Here is what the code might look like:

def histogram(s):

 d = dict()

 for c in s:

 if c not in d:

 d[c] = 1

 else:

 d[c] += 1

 return d

The name of the function is histogram, which is a statistical
term for a collection of counters (or frequencies).
The first line of the function creates an empty dictionary.
The for loop traverses the string. Each time through the
loop, if the character c is not in the dictionary, we create a
new item with key c and the initial value 1 (since we have
seen this letter once). If c is already in the dictionary we
increment d[c].
Here’s how it works:

>>> h = histogram('brontosaurus')

>>> h

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and 'b' appear
once; 'o' appears twice, and so on.
Dictionaries have a method called get that takes a key and
a default value. If the key appears in the dictionary, get
returns the corresponding value; otherwise it returns the
default value. For example:

>>> h = histogram('a')

>>> h

{'a': 1}

>>> h.get('a', 0)

1

>>> h.get('b', 0)

0

As an exercise, use get to write histogram more concisely.
You should be able to eliminate the if statement.

Looping and Dictionaries

If you use a dictionary in a for statement, it traverses the
keys of the dictionary. For example, print_hist prints each
key and the corresponding value:

def print_hist(h):

 for c in h:

 print(c, h[c])

Here’s what the output looks like:

>>> h = histogram('parrot')

>>> print_hist(h)

a 1

p 1

r 2

t 1

o 1

Again, the keys are in no particular order. To traverse the
keys in sorted order, you can use the built-in function
sorted:

>>> for key in sorted(h):

... print(key, h[key])

a 1

o 1

p 1

r 2

t 1

Reverse Lookup

Given a dictionary d and a key k, it is easy to find the
corresponding value v = d[k]. This operation is called a
lookup.

But what if you have v and you want to find k? You have two
problems: first, there might be more than one key that
maps to the value v. Depending on the application, you
might be able to pick one, or you might have to make a list
that contains all of them. Second, there is no simple syntax
to do a reverse lookup; you have to search.
Here is a function that takes a value and returns the first
key that maps to that value:

def reverse_lookup(d, v):

 for k in d:

 if d[k] == v:

 return k

 raise LookupError()

This function is yet another example of the search pattern,
but it uses a feature we haven’t seen before: raise. The
raise statement causes an exception; in this case it causes
a LookupError, which is a built-in exception used to indicate
that a lookup operation failed.
If we get to the end of the loop, that means v doesn’t
appear in the dictionary as a value, so we raise an
exception.
Here is an example of a successful reverse lookup:

>>> h = histogram('parrot')

>>> k = reverse_lookup(h, 2)

>>> k

'r'

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 5, in reverse_lookup

LookupError

The effect when you raise an exception is the same as when
Python raises one: it prints a traceback and an error
message.
The raise statement can take a detailed error message as
an optional argument. For example:

>>> raise LookupError('value does not appear in the dictionary')

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

LookupError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if
you have to do it often, or if the dictionary gets big, the
performance of your program will suffer.

Dictionaries and Lists

Lists can appear as values in a dictionary. For example, if
you are given a dictionary that maps from letters to
frequencies, you might want to invert it; that is, create a
dictionary that maps from frequencies to letters. Since
there might be several letters with the same frequency,
each value in the inverted dictionary should be a list of
letters.
Here is a function that inverts a dictionary:

def invert_dict(d):

 inverse = dict()

 for key in d:

 val = d[key]

 if val not in inverse:

 inverse[val] = [key]

 else:

 inverse[val].append(key)

 return inverse

Each time through the loop, key gets a key from d and val
gets the corresponding value. If val is not in inverse, that
means we haven’t seen it before, so we create a new item
and initialize it with a singleton (a list that contains a
single element). Otherwise we have seen this value before,
so we append the corresponding key to the list.
Here is an example:

>>> hist = histogram('parrot')

>>> hist

{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}

>>> inverse = invert_dict(hist)

>>> inverse

{1: ['a', 'p', 't', 'o'], 2: ['r']}

Figure 11-1 is a state diagram showing hist and inverse. A
dictionary is represented as a box with the type dict above
it and the key-value pairs inside. If the values are integers,
floats or strings, I draw them inside the box, but I usually
draw lists outside the box, just to keep the diagram simple.

Figure 11-1. State diagram.

Lists can be values in a dictionary, as this example shows,
but they cannot be keys. Here’s what happens if you try:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'oops'

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using
a hashtable and that means that the keys have to be
hashable.
A hash is a function that takes a value (of any kind) and
returns an integer. Dictionaries use these integers, called
hash values, to store and look up key-value pairs.
This system works fine if the keys are immutable. But if the
keys are mutable, like lists, bad things happen. For
example, when you create a key-value pair, Python hashes
the key and stores it in the corresponding location. If you
modify the key and then hash it again, it would go to a
different location. In that case you might have two entries

for the same key, or you might not be able to find a key.
Either way, the dictionary wouldn’t work correctly.
That’s why keys have to be hashable, and why mutable
types like lists aren’t. The simplest way to get around this
limitation is to use tuples, which we will see in the next
chapter.
Since dictionaries are mutable, they can’t be used as keys,
but they can be used as values.

Memos

If you played with the fibonacci function from “One More
Example”, you might have noticed that the bigger the
argument you provide, the longer the function takes to run.
Furthermore, the runtime increases quickly.
To understand why, consider Figure 11-2, which shows the
call graph for fibonacci with n=4.

Figure 11-2. Call graph.

A call graph shows a set of function frames, with lines
connecting each frame to the frames of the functions it
calls. At the top of the graph, fibonacci with n=4 calls
fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls
fibonacci with n=2 and n=1. And so on.
Count how many times fibonacci(0) and fibonacci(1) are
called. This is an inefficient solution to the problem, and it
gets worse as the argument gets bigger.
One solution is to keep track of values that have already
been computed by storing them in a dictionary. A
previously computed value that is stored for later use is
called a memo. Here is a “memoized” version of fibonacci:

known = {0:0, 1:1}

def fibonacci(n):

 if n in known:

 return known[n]

 res = fibonacci(n-1) + fibonacci(n-2)

 known[n] = res

 return res

known is a dictionary that keeps track of the Fibonacci
numbers we already know. It starts with two items: 0 maps
to 0 and 1 maps to 1.
Whenever fibonacci is called, it checks known. If the result is
already there, it can return immediately. Otherwise it has
to compute the new value, add it to the dictionary, and
return it.
If you run this version of fibonacci and compare it with the
original, you will find that it is much faster.

Global Variables

In the previous example, known is created outside the
function, so it belongs to the special frame called __main__.
Variables in __main__ are sometimes called global because
they can be accessed from any function. Unlike local
variables, which disappear when their function ends, global
variables persist from one function call to the next.
It is common to use global variables for flags; that is,
boolean variables that indicate (“flag”) whether a condition
is true. For example, some programs use a flag named
verbose to control the level of detail in the output:

verbose = True

def example1():

 if verbose:

 print('Running example1')

If you try to reassign a global variable, you might be
surprised. The following example is supposed to keep track
of whether the function has been called:

been_called = False

def example2():

 been_called = True # WRONG

But if you run it you will see that the value of been_called
doesn’t change. The problem is that example2 creates a new
local variable named been_called. The local variable goes
away when the function ends, and has no effect on the
global variable.
To reassign a global variable inside a function you have to
declare the global variable before you use it:

been_called = False

def example2():

 global been_called

 been_called = True

The global statement tells the interpreter something like,
“In this function, when I say been_called, I mean the global
variable; don’t create a local one.”
Here’s an example that tries to update a global variable:

count = 0

def example3():

 count = count + 1 # WRONG

If you run it you get:

UnboundLocalError: local variable 'count' referenced before assignment

Python assumes that count is local, and under that
assumption you are reading it before writing it. The
solution, again, is to declare count global:

def example3():

 global count

 count += 1

If a global variable refers to a mutable value, you can
modify the value without declaring the variable:

known = {0:0, 1:1}

def example4():

 known[2] = 1

So you can add, remove and replace elements of a global
list or dictionary, but if you want to reassign the variable,
you have to declare it:

def example5():

 global known

 known = dict()

Global variables can be useful, but if you have a lot of them,
and you modify them frequently, they can make programs
hard to debug.

Debugging

As you work with bigger datasets it can become unwieldy
to debug by printing and checking the output by hand.
Here are some suggestions for debugging large datasets:

Scale down the input:
If possible, reduce the size of the dataset. For example if
the program reads a text file, start with just the first 10
lines, or with the smallest example you can find. You can
either edit the files themselves, or (better) modify the
program so it reads only the first n lines.
If there is an error, you can reduce n to the smallest
value that manifests the error, and then increase it
gradually as you find and correct errors.

Check summaries and types:
Instead of printing and checking the entire dataset,
consider printing summaries of the data: for example,
the number of items in a dictionary or the total of a list
of numbers.
A common cause of runtime errors is a value that is not
the right type. For debugging this kind of error, it is
often enough to print the type of a value.

Write self-checks:
Sometimes you can write code to check for errors
automatically. For example, if you are computing the
average of a list of numbers, you could check that the
result is not greater than the largest element in the list
or less than the smallest. This is called a “sanity check”
because it detects results that are “insane”.
Another kind of check compares the results of two
different computations to see if they are consistent. This
is called a “consistency check”.

Format the output:

Formatting debugging output can make it easier to spot
an error. We saw an example in “Debugging”. The pprint
module provides a pprint function that displays built-in
types in a more human-readable format (pprint stands
for “pretty print”).

Again, time you spend building scaffolding can reduce the
time you spend debugging.

Glossary

mapping:
A relationship in which each element of one set
corresponds to an element of another set.

dictionary:
A mapping from keys to their corresponding values.

key-value pair:
The representation of the mapping from a key to a value.

item:
In a dictionary, another name for a key-value pair.

key:
An object that appears in a dictionary as the first part of
a key-value pair.

value:
An object that appears in a dictionary as the second part
of a key-value pair. This is more specific than our
previous use of the word “value”.

implementation:

A way of performing a computation.

hashtable:
The algorithm used to implement Python dictionaries.

hash function:
A function used by a hashtable to compute the location
for a key.

hashable:
A type that has a hash function. Immutable types like
integers, floats and strings are hashable; mutable types
like lists and dictionaries are not.

lookup:
A dictionary operation that takes a key and finds the
corresponding value.

reverse lookup:
A dictionary operation that takes a value and finds one
or more keys that map to it.

raise statement:
A statement that (deliberately) raises an exception.

singleton:
A list (or other sequence) with a single element.

call graph:
A diagram that shows every frame created during the
execution of a program, with an arrow from each caller
to each callee.

memo:

A computed value stored to avoid unnecessary future
computation.

global variable:
A variable defined outside a function. Global variables
can be accessed from any function.

global statement:
A statement that declares a variable name global.

flag:
A boolean variable used to indicate whether a condition
is true.

declaration:
A statement like global that tells the interpreter
something about a variable.

Exercises

Exercise 11-1.

Write a function that reads the words in words.txt and
stores them as keys in a dictionary. It doesn’t matter what
the values are. Then you can use the in operator as a fast
way to check whether a string is in the dictionary.
If you did Exercise 10-10, you can compare the speed of
this implementation with the list in operator and the
bisection search.

Exercise 11-2.

Read the documentation of the dictionary method
setdefault and use it to write a more concise version of
invert_dict.

Solution: http://thinkpython2.com/code/invert_dict.py.

Exercise 11-3.

Memoize the Ackermann function from Exercise 6-2 and
see if memoization makes it possible to evaluate the
function with bigger arguments. Hint: no.
Solution:
http://thinkpython2.com/code/ackermann_memo.py.

Exercise 11-4.

If you did Exercise 10-7, you already have a function named
has_duplicates that takes a list as a parameter and returns
True if there is any object that appears more than once in
the list.
Use a dictionary to write a faster, simpler version of
has_duplicates.
Solution: http://thinkpython2.com/code/has_duplicates.py.

Exercise 11-5.

Two words are “rotate pairs” if you can rotate one of them
and get the other (see rotate_word in Exercise 8-5).
Write a program that reads a wordlist and finds all the
rotate pairs.
Solution: http://thinkpython2.com/code/rotate_pairs.py.

Exercise 11-6.

Here’s another Puzzler from Car Talk

(http://www.cartalk.com/content/puzzlers):

http://thinkpython2.com/code/invert_dict.py
http://thinkpython2.com/code/ackermann_memo.py
http://thinkpython2.com/code/has_duplicates.py
http://thinkpython2.com/code/rotate_pairs.py
http://www.cartalk.com/content/puzzlers

This was sent in by a fellow named Dan O’Leary. He came

upon a common one-syllable, five-letter word recently

that has the following unique property. When you remove

the first letter, the remaining letters form a homophone

of the original word, that is a word that sounds exactly

the same. Replace the first letter, that is, put it back and

remove the second letter, and the result is yet another

homophone of the original word. And the question is,

what’s the word?

Now I’m going to give you an example that doesn’t work.

Let’s look at the five-letter word, ‘wrack.’ W-R-A-C-K, you

know like to ‘wrack with pain.’ If I remove the first letter,

I am left with a four-letter word, ‘R-A-C-K.’ As in, ‘Holy

cow, did you see the rack on that buck! It must have been

a nine-pointer!’ It’s a perfect homophone. If you put the

‘w’ back, and remove the ‘r,’ instead, you’re left with the

word, ‘wack,’ which is a real word, it’s just not a

homophone of the other two words.

But there is, however, at least one word that Dan and we

know of, which will yield two homophones if you remove

either of the first two letters to make two, new four-letter

words. The question is, what’s the word?

You can use the dictionary from Exercise 11-1 to check
whether a string is in the word list.
To check whether two words are homophones, you can use
the CMU Pronouncing Dictionary. You can download it
from http://www.speech.cs.cmu.edu/cgi-bin/cmudict or from
http://thinkpython2.com/code/c06d and you can also
download http://thinkpython2.com/code/pronounce.py,
which provides a function named read_dictionary that reads
the pronouncing dictionary and returns a Python dictionary
that maps from each word to a string that describes its
primary pronunciation.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://thinkpython2.com/code/c06d
http://thinkpython2.com/code/pronounce.py

Write a program that lists all the words that solve the
Puzzler.
Solution: http://thinkpython2.com/code/homophone.py.

http://thinkpython2.com/code/homophone.py

Chapter 12. Tuples

This chapter presents one more built-in type, the tuple, and
then shows how lists, dictionaries, and tuples work
together. I also present a useful feature for variable-length
argument lists: the gather and scatter operators.
One note: there is no consensus on how to pronounce
“tuple”. Some people say “tuh-ple”, which rhymes with
“supple”. But in the context of programming, most people
say “too-ple”, which rhymes with “quadruple”.

Tuples Are Immutable

A tuple is a sequence of values. The values can be any type,
and they are indexed by integers, so in that respect tuples
are a lot like lists. The important difference is that tuples
are immutable.
Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples
in parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include
a final comma:

>>> t1 = 'a',

>>> type(t1)

<class 'tuple'>

A value in parentheses is not a tuple:

>>> t2 = ('a')

>>> type(t2)

<class 'str'>

Another way to create a tuple is the built-in function tuple.
With no argument, it creates an empty tuple:

>>> t = tuple()

>>> t

()

If the argument is a sequence (string, list or tuple), the
result is a tuple with the elements of the sequence:

>>> t = tuple('lupins')

>>> t

('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a built-in function, you should
avoid using it as a variable name.
Most list operators also work on tuples. The bracket
operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> t[0]

'a'

And the slice operator selects a range of elements:

>>> t[1:3]

('b', 'c')

But if you try to modify one of the elements of the tuple,
you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

Because tuples are immutable, you can’t modify the
elements. But you can replace one tuple with another:

>>> t = ('A',) + t[1:]

>>> t

('A', 'b', 'c', 'd', 'e')

This statement makes a new tuple and then makes t refer
to it.
The relational operators work with tuples and other
sequences; Python starts by comparing the first element
from each sequence. If they are equal, it goes on to the
next elements, and so on, until it finds elements that differ.
Subsequent elements are not considered (even if they are
really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

Tuple Assignment

It is often useful to swap the values of two variables. With
conventional assignments, you have to use a temporary
variable. For example, to swap a and b:

>>> temp = a

>>> a = b

>>> b = temp

This solution is cumbersome; tuple assignment is more
elegant:

>>> a, b = b, a

The left side is a tuple of variables; the right side is a tuple
of expressions. Each value is assigned to its respective
variable. All the expressions on the right side are evaluated
before any of the assignments.
The number of variables on the left and the number of
values on the right have to be the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence
(string, list or tuple). For example, to split an email address
into a user name and a domain, you could write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the
first element is assigned to uname, the second to domain:

>>> uname

'monty'

>>> domain

'python.org'

Tuples as Return Values

Strictly speaking, a function can only return one value, but
if the value is a tuple, the effect is the same as returning
multiple values. For example, if you want to divide two
integers and compute the quotient and remainder, it is
inefficient to compute x/y and then x%y. It is better to
compute them both at the same time.

The built-in function divmod takes two arguments and
returns a tuple of two values: the quotient and remainder.
You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> quot

2

>>> rem

1

Here is an example of a function that returns a tuple:

def min_max(t):

 return min(t), max(t)

max and min are built-in functions that find the largest and
smallest elements of a sequence. min_max computes both
and returns a tuple of two values.

Variable-Length Argument Tuples

Functions can take a variable number of arguments. A
parameter name that begins with * gathers arguments into
a tuple. For example, printall takes any number of
arguments and prints them:

def printall(*args):

 print(args)

The gather parameter can have any name you like, but args
is conventional. Here’s how the function works:

>>> printall(1, 2.0, '3')

(1, 2.0, '3')

The complement of gather is scatter. If you have a
sequence of values and you want to pass it to a function as
multiple arguments, you can use the * operator. For
example, divmod takes exactly two arguments; it doesn’t
work with a tuple:

>>> t = (7, 3)

>>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)

(2, 1)

Many of the built-in functions use variable-length argument
tuples. For example, max and min can take any number of
arguments:

>>> max(1, 2, 3)

3

But sum does not:

>>> sum(1, 2, 3)

TypeError: sum expected at most 2 arguments, got 3

As an exercise, write a function called sumall that takes any
number of arguments and returns their sum.

Lists and Tuples

zip is a built-in function that takes two or more sequences
and returns a list of tuples where each tuple contains one
element from each sequence. The name of the function
refers to a zipper, which joins and interleaves two rows of
teeth.
This example zips a string and a list:

>>> s = 'abc'

>>> t = [0, 1, 2]

>>> zip(s, t)

<zip object at 0x7f7d0a9e7c48>

The result is a zip object that knows how to iterate
through the pairs. The most common use of zip is in a for
loop:

>>> for pair in zip(s, t):

... print(pair)

...

('a', 0)

('b', 1)

('c', 2)

A zip object is a kind of iterator, which is any object that
iterates through a sequence. Iterators are similar to lists in
some ways, but unlike lists, you can’t use an index to select
an element from an iterator.
If you want to use list operators and methods, you can use
a zip object to make a list:

>>> list(zip(s, t))

[('a', 0), ('b', 1), ('c', 2)]

The result is a list of tuples; in this example, each tuple
contains a character from the string and the corresponding

element from the list.
If the sequences are not the same length, the result has the
length of the shorter one:

>>> list(zip('Anne', 'Elk'))

[('A', 'E'), ('n', 'l'), ('n', 'k')]

You can use tuple assignment in a for loop to traverse a list
of tuples:

t = [('a', 0), ('b', 1), ('c', 2)]

for letter, number in t:

 print(number, letter)

Each time through the loop, Python selects the next tuple in
the list and assigns the elements to letter and number. The
output of this loop is:

0 a

1 b

2 c

If you combine zip, for and tuple assignment, you get a
useful idiom for traversing two (or more) sequences at the
same time. For example, has_match takes two sequences, t1
and t2, and returns True if there is an index i such that
t1[i] == t2[i]:

def has_match(t1, t2):

 for x, y in zip(t1, t2):

 if x == y:

 return True

 return False

If you need to traverse the elements of a sequence and
their indices, you can use the built-in function enumerate:

for index, element in enumerate('abc'):

 print(index, element)

The result from enumerate is an enumerate object, which
iterates a sequence of pairs; each pair contains an index
(starting from 0) and an element from the given sequence.
In this example, the output is

0 a

1 b

2 c

Again.

Dictionaries and Tuples

Dictionaries have a method called items that returns a
sequence of tuples, where each tuple is a key-value pair:

>>> d = {'a':0, 'b':1, 'c':2}

>>> t = d.items()

>>> t

dict_items([('c', 2), ('a', 0), ('b', 1)])

The result is a dict_items object, which is an iterator that
iterates the key-value pairs. You can use it in a for loop like
this:

>>> for key, value in d.items():

... print(key, value)

...

c 2

a 0

b 1

As you should expect from a dictionary, the items are in no
particular order.

Going in the other direction, you can use a list of tuples to
initialize a new dictionary:

>>> t = [('a', 0), ('c', 2), ('b', 1)]

>>> d = dict(t)

>>> d

{'a': 0, 'c': 2, 'b': 1}

Combining dict with zip yields a concise way to create a
dictionary:

>>> d = dict(zip('abc', range(3)))

>>> d

{'a': 0, 'c': 2, 'b': 1}

The dictionary method update also takes a list of tuples and
adds them, as key-value pairs, to an existing dictionary.
It is common to use tuples as keys in dictionaries (primarily
because you can’t use lists). For example, a telephone
directory might map from last-name, first-name pairs to
telephone numbers. Assuming that we have defined last,
first and number, we could write:

directory[last, first] = number

The expression in brackets is a tuple. We could use tuple
assignment to traverse this dictionary:

for last, first in directory:

 print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples.
It assigns the elements of each tuple to last and first, then
prints the name and corresponding telephone number.
There are two ways to represent tuples in a state diagram.
The more detailed version shows the indices and elements

just as they appear in a list. For example, the tuple
('Cleese', 'John') would appear as in Figure 12-1.

Figure 12-1. State diagram.

But in a larger diagram you might want to leave out the
details. For example, a diagram of the telephone directory
might appear as in Figure 12-2.

Figure 12-2. State diagram.

Here the tuples are shown using Python syntax as a
graphical shorthand. The telephone number in the diagram
is the complaints line for the BBC, so please don’t call it.

Sequences of Sequences

I have focused on lists of tuples, but almost all of the
examples in this chapter also work with lists of lists, tuples
of tuples, and tuples of lists. To avoid enumerating the
possible combinations, it is sometimes easier to talk about
sequences of sequences.
In many contexts, the different kinds of sequences (strings,
lists and tuples) can be used interchangeably. So how
should you choose one over the others?
To start with the obvious, strings are more limited than
other sequences because the elements have to be
characters. They are also immutable. If you need the ability
to change the characters in a string (as opposed to creating
a new string), you might want to use a list of characters
instead.
Lists are more common than tuples, mostly because they
are mutable. But there are a few cases where you might
prefer tuples:

1. In some contexts, like a return statement, it is
syntactically simpler to create a tuple than a list.

2. If you want to use a sequence as a dictionary key, you
have to use an immutable type like a tuple or string.

3. If you are passing a sequence as an argument to a
function, using tuples reduces the potential for
unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods
like sort and reverse, which modify existing lists. But Python
provides the built-in function sorted, which takes any
sequence and returns a new list with the same elements in
sorted order, and reversed, which takes a sequence and
returns an iterator that traverses the list in reverse order.

Debugging

Lists, dictionaries and tuples are examples of data

structures; in this chapter we are starting to see
compound data structures, like lists of tuples, or
dictionaries that contain tuples as keys and lists as values.
Compound data structures are useful, but they are prone to
what I call shape errors; that is, errors caused when a
data structure has the wrong type, size, or structure. For
example, if you are expecting a list with one integer and I
give you a plain old integer (not in a list), it won’t work.
To help debug these kinds of errors, I have written a
module called structshape that provides a function, also
called structshape, that takes any kind of data structure as
an argument and returns a string that summarizes its
shape. You can download it from
http://thinkpython2.com/code/structshape.py.
Here’s the result for a simple list:

>>> from structshape import structshape

>>> t = [1, 2, 3]

>>> structshape(t)

'list of 3 int'

A fancier program might write “list of 3 ints”, but it was
easier not to deal with plurals. Here’s a list of lists:

http://thinkpython2.com/code/structshape.py

>>> t2 = [[1,2], [3,4], [5,6]]

>>> structshape(t2)

'list of 3 list of 2 int'

If the elements of the list are not the same type, structshape
groups them, in order, by type:

>>> t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]

>>> structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int)'

Here’s a list of tuples:

>>> s = 'abc'

>>> lt = list(zip(t, s))

>>> structshape(lt)

'list of 3 tuple of (int, str)'

And here’s a dictionary with three items that map integers
to strings:

>>> d = dict(lt)

>>> structshape(d)

'dict of 3 int->str'

If you are having trouble keeping track of your data
structures, structshape can help.

Glossary

tuple:
An immutable sequence of elements.

tuple assignment:
An assignment with a sequence on the right side and a
tuple of variables on the left. The right side is evaluated

and then its elements are assigned to the variables on
the left.

gather:
The operation of assembling a variable-length argument
tuple.

scatter:
The operation of treating a sequence as a list of
arguments.

zip object:
The result of calling a built-in function zip; an object that
iterates through a sequence of tuples.

iterator:
An object that can iterate through a sequence, but which
does not provide list operators and methods.

data structure:
A collection of related values, often organized in lists,
dictionaries, tuples, etc.

shape error:
An error caused because a value has the wrong shape;
that is, the wrong type or size.

Exercises

Exercise 12-1.

Write a function called most_frequent that takes a string and
prints the letters in decreasing order of frequency. Find
text samples from several different languages and see how
letter frequency varies between languages. Compare your

results with the tables at
http://en.wikipedia.org/wiki/Letter_frequencies.
Solution: http://thinkpython2.com/code/most_frequent.py.

Exercise 12-2.

More anagrams!
1. Write a program that reads a word list from a file (see

“Reading Word Lists”) and prints all the sets of words
that are anagrams.
Here is an example of what the output might look like:
['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']

['retainers', 'ternaries']

['generating', 'greatening']

['resmelts', 'smelters', 'termless']

Hint: you might want to build a dictionary that maps
from a collection of letters to a list of words that can be
spelled with those letters. The question is, how can you
represent the collection of letters in a way that can be
used as a key?

2. Modify the previous program so that it prints the
longest list of anagrams first, followed by the second
longest, and so on.

3. In Scrabble, a “bingo” is when you play all seven tiles
in your rack, along with a letter on the board, to form
an eight-letter word. What collection of eight letters
forms the most possible bingos? Hint: there are seven.
Solution:
http://thinkpython2.com/code/anagram_sets.py.

Exercise 12-3.

Two words form a “metathesis pair” if you can transform
one into the other by swapping two letters; for example,
“converse” and “conserve”. Write a program that finds all

http://en.wikipedia.org/wiki/Letter_frequencies
http://thinkpython2.com/code/most_frequent.py
http://thinkpython2.com/code/anagram_sets.py

of the metathesis pairs in the dictionary. Hint: don’t test all
pairs of words, and don’t test all possible swaps.
Solution: http://thinkpython2.com/code/metathesis.py.
Credit: This exercise is inspired by an example at
http://puzzlers.org.

Exercise 12-4.

Here’s another Car Talk Puzzler
(http://www.cartalk.com/content/puzzlers):
What is the longest English word, that remains a valid

English word, as you remove its letters one at a time?

Now, letters can be removed from either end, or the

middle, but you can’t rearrange any of the letters. Every

time you drop a letter, you wind up with another English

word. If you do that, you’re eventually going to wind up

with one letter and that too is going to be an English

word—one that’s found in the dictionary. I want to know

what’s the longest word and how many letters does it

have?

I’m going to give you a little modest example: Sprite. Ok?

You start off with sprite, you take a letter off, one from

the interior of the word, take the r away, and we’re left

with the word spite, then we take the e off the end, we’re

left with spit, we take the s off, we’re left with pit, it, and

I.

Write a program to find all words that can be reduced in
this way, and then find the longest one.
This exercise is a little more challenging than most, so here
are some suggestions:

1. You might want to write a function that takes a word
and computes a list of all the words that can be formed

http://thinkpython2.com/code/metathesis.py
http://puzzlers.org/
http://www.cartalk.com/content/puzzlers

by removing one letter. These are the “children” of the
word.

2. Recursively, a word is reducible if any of its children
are reducible. As a base case, you can consider the
empty string reducible.

3. The wordlist I provided, words.txt, doesn’t contain
single letter words. So you might want to add “I”, “a”,
and the empty string.

4. To improve the performance of your program, you
might want to memoize the words that are known to be
reducible.

Solution: http://thinkpython2.com/code/reducible.py.

http://thinkpython2.com/code/reducible.py

Chapter 13. Case Study:

Data Structure Selection

At this point you have learned about Python’s core data
structures, and you have seen some of the algorithms that
use them. If you would like to know more about algorithms,
this might be a good time to read Chapter 21. But you don’t
have to read it before you go on; you can read it whenever
you are interested.
This chapter presents a case study with exercises that let
you think about choosing data structures and practice
using them.

Word Frequency Analysis

As usual, you should at least attempt the exercises before
you read my solutions.
Exercise 13-1.

Write a program that reads a file, breaks each line into
words, strips whitespace and punctuation from the words,
and converts them to lowercase.
Hint: The string module provides a string named whitespace,
which contains space, tab, newline, etc., and punctuation
which contains the punctuation characters. Let’s see if we
can make Python swear:
>>> import string

>>> string.punctuation

'!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'

Also, you might consider using the string methods strip,
replace and translate.

Exercise 13-2.

Go to Project Gutenberg (http://gutenberg.org) and
download your favorite out-of-copyright book in plain text
format.
Modify your program from the previous exercise to read
the book you downloaded, skip over the header information
at the beginning of the file, and process the rest of the
words as before.
Then modify the program to count the total number of
words in the book, and the number of times each word is
used.
Print the number of different words used in the book.
Compare different books by different authors, written in
different eras. Which author uses the most extensive
vocabulary?

Exercise 13-3.

Modify the program from the previous exercise to print the
20 most frequently used words in the book.

Exercise 13-4.

Modify the previous program to read a word list (see
“Reading Word Lists”) and then print all the words in the
book that are not in the word list. How many of them are
typos? How many of them are common words that should

be in the word list, and how many of them are really
obscure?

Random Numbers

http://gutenberg.org/

Given the same inputs, most computer programs generate
the same outputs every time, so they are said to be
deterministic. Determinism is usually a good thing, since
we expect the same calculation to yield the same result.
For some applications, though, we want the computer to be
unpredictable. Games are an obvious example, but there
are more.
Making a program truly nondeterministic turns out to be
difficult, but there are ways to make it at least seem
nondeterministic. One of them is to use algorithms that
generate pseudorandom numbers. Pseudorandom
numbers are not truly random because they are generated
by a deterministic computation, but just by looking at the
numbers it is all but impossible to distinguish them from
random.
The random module provides functions that generate
pseudorandom numbers (which I will simply call “random”
from here on).
The function random returns a random float between 0.0 and
1.0 (including 0.0 but not 1.0). Each time you call random,
you get the next number in a long series. To see a sample,
run this loop:

import random

for i in range(10):

 x = random.random()

 print(x)

The function randint takes parameters low and high and
returns an integer between low and high (including both):

>>> random.randint(5, 10)

5

>>> random.randint(5, 10)

9

To choose an element from a sequence at random, you can
use choice:

>>> t = [1, 2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3

The random module also provides functions to generate
random values from continuous distributions including
Gaussian, exponential, gamma, and a few more.
Exercise 13-5.

Write a function named choose_from_hist that takes a
histogram as defined in “Dictionary as a Collection of
Counters” and returns a random value from the histogram,
chosen with probability in proportion to frequency. For
example, for this histogram:
>>> t = ['a', 'a', 'b']

>>> hist = histogram(t)

>>> hist

{'a': 2, 'b': 1}

your function should return 'a' with probability 2/3 and 'b'
with probability 1/3.

Word Histogram

You should attempt the previous exercises before you go
on. You can download my solution from
http://thinkpython2.com/code/analyze_book1.py. You will
also need http://thinkpython2.com/code/emma.txt.

http://thinkpython2.com/code/analyze_book1.py
http://thinkpython2.com/code/emma.txt

Here is a program that reads a file and builds a histogram
of the words in the file:

import string

def process_file(filename):

 hist = dict()

 fp = open(filename)

 for line in fp:

 process_line(line, hist)

 return hist

def process_line(line, hist):

 line = line.replace('-', ' ')

 for word in line.split():

 word = word.strip(string.punctuation + string.whitespace)

 word = word.lower()

 hist[word] = hist.get(word, 0) + 1

hist = process_file('emma.txt')

This program reads emma.txt, which contains the text of
Emma by Jane Austen.
process_file loops through the lines of the file, passing
them one at a time to process_line. The histogram hist is
being used as an accumulator.
process_line uses the string method replace to replace
hyphens with spaces before using split to break the line
into a list of strings. It traverses the list of words and uses
strip and lower to remove punctuation and convert to
lowercase. (It is shorthand to say that strings are
“converted”; remember that strings are immutable, so
methods like strip and lower return new strings.)
Finally, process_line updates the histogram by creating a
new item or incrementing an existing one.

To count the total number of words in the file, we can add
up the frequencies in the histogram:

def total_words(hist):

 return sum(hist.values())

The number of different words is just the number of items
in the dictionary:

def different_words(hist):

 return len(hist)

Here is some code to print the results:

print('Total number of words:', total_words(hist))

print('Number of different words:', different_words(hist))

And the results:

Total number of words: 161080

Number of different words: 7214

Most Common Words

To find the most common words, we can make a list of
tuples, where each tuple contains a word and its frequency,
and sort it.
The following function takes a histogram and returns a list
of word-frequency tuples:

def most_common(hist):

 t = []

 for key, value in hist.items():

 t.append((value, key))

 t.sort(reverse=True)

 return t

In each tuple, the frequency appears first, so the resulting
list is sorted by frequency. Here is a loop that prints the 10
most common words:

t = most_common(hist)

print('The most common words are:')

for freq, word in t[:10]:

 print(word, freq, sep='\t')

I use the keyword argument sep to tell print to use a tab
character as a “separator”, rather than a space, so the
second column is lined up. Here are the results from
Emma:

The most common words are:

to 5242

the 5205

and 4897

of 4295

i 3191

a 3130

it 2529

her 2483

was 2400

she 2364

This code can be simplified using the key parameter of the
sort function. If you are curious, you can read about it at
https://wiki.python.org/moin/HowTo/Sorting.

Optional Parameters

We have seen built-in functions and methods that take
optional arguments. It is possible to write programmer-
defined functions with optional arguments, too. For
example, here is a function that prints the most common
words in a histogram:

https://wiki.python.org/moin/HowTo/Sorting

def print_most_common(hist, num=10):

 t = most_common(hist)

 print('The most common words are:')

 for freq, word in t[:num]:

 print(word, freq, sep='\t')

The first parameter is required; the second is optional. The
default value of num is 10.
If you only provide one argument:

print_most_common(hist)

num gets the default value. If you provide two arguments:

print_most_common(hist, 20)

num gets the value of the argument instead. In other words,
the optional argument overrides the default value.
If a function has both required and optional parameters, all
the required parameters have to come first, followed by the
optional ones.

Dictionary Subtraction

Finding the words from the book that are not in the word
list from words.txt is a problem you might recognize as set
subtraction; that is, we want to find all the words from one
set (the words in the book) that are not in the other (the
words in the list).
subtract takes dictionaries d1 and d2 and returns a new
dictionary that contains all the keys from d1 that are not in
d2. Since we don’t really care about the values, we set them
all to None:

def subtract(d1, d2):

 res = dict()

 for key in d1:

 if key not in d2:

 res[key] = None

 return res

To find the words in the book that are not in words.txt, we
can use process_file to build a histogram for words.txt, and
then subtract:

words = process_file('words.txt')

diff = subtract(hist, words)

print("Words in the book that aren't in the word list:")

for word in diff:

 print(word, end=' ')

Here are some of the results from Emma:

Words in the book that aren't in the word list:

rencontre jane's blanche woodhouses disingenuousness

friend's venice apartment ...

Some of these words are names and possessives. Others,
like “rencontre”, are no longer in common use. But a few
are common words that should really be in the list!
Exercise 13-6.

Python provides a data structure called set that provides
many common set operations. You can read about them in
“Sets”, or read the documentation at
http://docs.python.org/3/library/stdtypes.html#types-set.
Write a program that uses set subtraction to find words in
the book that are not in the word list.
Solution: http://thinkpython2.com/code/analyze_book2.py.

http://docs.python.org/3/library/stdtypes.html#types-set
http://thinkpython2.com/code/analyze_book2.py

Random Words

To choose a random word from the histogram, the simplest
algorithm is to build a list with multiple copies of each
word, according to the observed frequency, and then
choose from the list:

def random_word(h):

 t = []

 for word, freq in h.items():

 t.extend([word] * freq)

 return random.choice(t)

The expression [word] * freq creates a list with freq copies
of the string word. The extend method is similar to append
except that the argument is a sequence.
This algorithm works, but it is not very efficient; each time
you choose a random word, it rebuilds the list, which is as
big as the original book. An obvious improvement is to
build the list once and then make multiple selections, but
the list is still big.
An alternative is:

1. Use keys to get a list of the words in the book.
2. Build a list that contains the cumulative sum of the

word frequencies (see Exercise 10-2). The last item in
this list is the total number of words in the book, n.

3. Choose a random number from 1 to n. Use a bisection
search (See Exercise 10-10) to find the index where
the random number would be inserted in the
cumulative sum.

4. Use the index to find the corresponding word in the
word list.

Exercise 13-7.

Write a program that uses this algorithm to choose a
random word from the book.
Solution: http://thinkpython2.com/code/analyze_book3.py.

Markov Analysis

If you choose words from the book at random, you can get a
sense of the vocabulary, but you probably won’t get a
sentence:

this the small regard harriet which knightley's it most things

A series of random words seldom makes sense because
there is no relationship between successive words. For
example, in a real sentence you would expect an article like
“the” to be followed by an adjective or a noun, and
probably not a verb or adverb.
One way to measure these kinds of relationships is Markov
analysis, which characterizes, for a given sequence of
words, the probability of the words that might come next.
For example, the song “Eric, the Half a Bee” begins:

Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D’you see?

But can a bee be said to be
Or not to be an entire bee
When half the bee is not a bee
Due to some ancient injury?

http://thinkpython2.com/code/analyze_book3.py

In this text, the phrase “half the” is always followed by the
word “bee”, but the phrase “the bee” might be followed by
either “has” or “is”.
The result of Markov analysis is a mapping from each prefix
(like “half the” and “the bee”) to all possible suffixes (like
“has” and “is”).
Given this mapping, you can generate a random text by
starting with any prefix and choosing at random from the
possible suffixes. Next, you can combine the end of the
prefix and the new suffix to form the next prefix, and
repeat.
For example, if you start with the prefix “Half a”, then the
next word has to be “bee”, because the prefix only appears
once in the text. The next prefix is “a bee”, so the next
suffix might be “philosophically”, “be” or “due”.
In this example the length of the prefix is always two, but
you can do Markov analysis with any prefix length.
Exercise 13-8.

Markov analysis:
1. Write a program to read a text from a file and perform

Markov analysis. The result should be a dictionary that
maps from prefixes to a collection of possible suffixes.
The collection might be a list, tuple, or dictionary; it is
up to you to make an appropriate choice. You can test
your program with prefix length 2, but you should
write the program in a way that makes it easy to try
other lengths.

2. Add a function to the previous program to generate
random text based on the Markov analysis. Here is an
example from Emma with prefix length 2:

He was very clever, be it sweetness or be angry,

ashamed or only amused, at such a stroke. She had

never thought of Hannah till you were never meant

for me?” “I cannot make speeches, Emma:” he soon

cut it all himself.

For this example, I left the punctuation attached to the
words. The result is almost syntactically correct, but
not quite. Semantically, it almost makes sense, but not
quite.
What happens if you increase the prefix length? Does
the random text make more sense?

3. Once your program is working, you might want to try a
mash-up: if you combine text from two or more books,
the random text you generate will blend the vocabulary
and phrases from the sources in interesting ways.

Credit: This case study is based on an example from
Kernighan and Pike, The Practice of Programming,
Addison-Wesley, 1999.

You should attempt this exercise before you go on; then you
can can download my solution from
http://thinkpython2.com/code/markov.py. You will also need
http://thinkpython2.com/code/emma.txt.

Data Structures

Using Markov analysis to generate random text is fun, but
there is also a point to this exercise: data structure
selection. In your solution to the previous exercises, you
had to choose:

How to represent the prefixes.
How to represent the collection of possible suffixes.

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/emma.txt

How to represent the mapping from each prefix to the
collection of possible suffixes.

The last one is easy: a dictionary is the obvious choice for a
mapping from keys to corresponding values.
For the prefixes, the most obvious options are string, list of
strings, or tuple of strings.
For the suffixes, one option is a list; another is a histogram
(dictionary).
How should you choose? The first step is to think about the
operations you will need to implement for each data
structure. For the prefixes, we need to be able to remove
words from the beginning and add to the end. For example,
if the current prefix is “Half a”, and the next word is “bee”,
you need to be able to form the next prefix, “a bee”.
Your first choice might be a list, since it is easy to add and
remove elements, but we also need to be able to use the
prefixes as keys in a dictionary, so that rules out lists. With
tuples, you can’t append or remove, but you can use the
addition operator to form a new tuple:

def shift(prefix, word):

 return prefix[1:] + (word,)

shift takes a tuple of words, prefix, and a string, word, and
forms a new tuple that has all the words in prefix except
the first, and word added to the end.
For the collection of suffixes, the operations we need to
perform include adding a new suffix (or increasing the
frequency of an existing one), and choosing a random
suffix.
Adding a new suffix is equally easy for the list
implementation or the histogram. Choosing a random

element from a list is easy; choosing from a histogram is
harder to do efficiently (see Exercise 13-7).
So far we have been talking mostly about ease of
implementation, but there are other factors to consider in
choosing data structures. One is runtime. Sometimes there
is a theoretical reason to expect one data structure to be
faster than other; for example, I mentioned that the in
operator is faster for dictionaries than for lists, at least
when the number of elements is large.
But often you don’t know ahead of time which
implementation will be faster. One option is to implement
both of them and see which is better. This approach is
called benchmarking. A practical alternative is to choose
the data structure that is easiest to implement, and then
see if it is fast enough for the intended application. If so,
there is no need to go on. If not, there are tools, like the
profile module, that can identify the places in a program
that take the most time.
The other factor to consider is storage space. For example,
using a histogram for the collection of suffixes might take
less space because you only have to store each word once,
no matter how many times it appears in the text. In some
cases, saving space can also make your program run faster,
and in the extreme, your program might not run at all if you
run out of memory. But for many applications, space is a
secondary consideration after runtime.
One final thought: in this discussion, I have implied that we
should use one data structure for both analysis and
generation. But since these are separate phases, it would
also be possible to use one structure for analysis and then
convert to another structure for generation. This would be
a net win if the time saved during generation exceeded the
time spent in conversion.

Debugging

When you are debugging a program, and especially if you
are working on a hard bug, there are five things to try:
Reading:

Examine your code, read it back to yourself, and check
that it says what you meant to say.

Running:
Experiment by making changes and running different
versions. Often if you display the right thing at the right
place in the program, the problem becomes obvious, but
sometimes you have to build scaffolding.

Ruminating:
Take some time to think! What kind of error is it: syntax,
runtime, or semantic? What information can you get
from the error messages, or from the output of the
program? What kind of error could cause the problem
you’re seeing? What did you change last, before the
problem appeared?

Rubberducking:
If you explain the problem to someone else, you
sometimes find the answer before you finish asking the
question. Often you don’t need the other person; you
could just talk to a rubber duck. And that’s the origin of
the well-known strategy called rubber duck

debugging. I am not making this up; see
https://en.wikipedia.org/wiki/Rubber_duck_debugging.

Retreating:
At some point, the best thing to do is back off and undo
recent changes until you get back to a program that

https://en.wikipedia.org/wiki/Rubber_duck_debugging

works and that you understand. Then you can start
rebuilding.

Beginning programmers sometimes get stuck on one of
these activities and forget the others. Each activity comes
with its own failure mode.
For example, reading your code might help if the problem
is a typographical error, but not if the problem is a
conceptual misunderstanding. If you don’t understand what
your program does, you can read it 100 times and never
see the error, because the error is in your head.
Running experiments can help, especially if you run small,
simple tests. But if you run experiments without thinking or
reading your code, you might fall into a pattern I call
“random walk programming”, which is the process of
making random changes until the program does the right
thing. Needless to say, random walk programming can take
a long time.
You have to take time to think. Debugging is like an
experimental science. You should have at least one
hypothesis about what the problem is. If there are two or
more possibilities, try to think of a test that would eliminate
one of them.
But even the best debugging techniques will fail if there
are too many errors, or if the code you are trying to fix is
too big and complicated. Sometimes the best option is to
retreat, simplifying the program until you get to something
that works and that you understand.
Beginning programmers are often reluctant to retreat
because they can’t stand to delete a line of code (even if it’s
wrong). If it makes you feel better, copy your program into
another file before you start stripping it down. Then you
can copy the pieces back one at a time.

Finding a hard bug requires reading, running, ruminating,
and sometimes retreating. If you get stuck on one of these
activities, try the others.

Glossary

deterministic:
Pertaining to a program that does the same thing each
time it runs, given the same inputs.

pseudorandom:
Pertaining to a sequence of numbers that appears to be
random, but is generated by a deterministic program.

default value:
The value given to an optional parameter if no argument
is provided.

override:
To replace a default value with an argument.

benchmarking:
The process of choosing between data structures by
implementing alternatives and testing them on a sample
of the possible inputs.

rubber duck debugging:
Debugging by explaining your problem to an inanimate
object such as a rubber duck. Articulating the problem
can help you solve it, even if the rubber duck doesn’t
know Python.

Exercises

Exercise 13-9.

The “rank” of a word is its position in a list of words sorted
by frequency: the most common word has rank 1, the
second most common has rank 2, etc.
Zipf’s law describes a relationship between the ranks and
frequencies of words in natural languages
(http://en.wikipedia.org/wiki/Zipf’s_law). Specifically, it
predicts that the frequency, f, of the word with rank r is:

where s and c are parameters that depend on the language
and the text. If you take the logarithm of both sides of this
equation, you get:

So if you plot log f versus log r, you should get a straight
line with slope -s and intercept log c.
Write a program that reads a text from a file, counts word
frequencies, and prints one line for each word, in
descending order of frequency, with log f and log r. Use the
graphing program of your choice to plot the results and
check whether they form a straight line. Can you estimate
the value of s?
Solution: http://thinkpython2.com/code/zipf.py. To run my
solution, you need the plotting module matplotlib. If you
installed Anaconda, you already have matplotlib; otherwise
you might have to install it.

http://en.wikipedia.org/wiki/Zipf%E2%80%99s_law
http://thinkpython2.com/code/zipf.py

Chapter 14. Files

This chapter introduces the idea of “persistent” programs
that keep data in permanent storage, and shows how to use
different kinds of permanent storage, like files and
databases.

Persistence

Most of the programs we have seen so far are transient in
the sense that they run for a short time and produce some
output, but when they end, their data disappears. If you run
the program again, it starts with a clean slate.
Other programs are persistent: they run for a long time
(or all the time); they keep at least some of their data in
permanent storage (a hard drive, for example); and if they
shut down and restart, they pick up where they left off.
Examples of persistent programs are operating systems,
which run pretty much whenever a computer is on, and
web servers, which run all the time, waiting for requests to
come in on the network.
One of the simplest ways for programs to maintain their
data is by reading and writing text files. We have already
seen programs that read text files; in this chapter we will
see programs that write them.
An alternative is to store the state of the program in a
database. In this chapter I will present a simple database
and a module, pickle, that makes it easy to store program
data.

Reading and Writing

A text file is a sequence of characters stored on a
permanent medium like a hard drive, flash memory, or CD-
ROM. We saw how to open and read a file in “Reading
Word Lists”.
To write a file, you have to open it with mode 'w' as a
second parameter:

>>> fout = open('output.txt', 'w')

If the file already exists, opening it in write mode clears out
the old data and starts fresh, so be careful! If the file
doesn’t exist, a new one is created.
open returns a file object that provides methods for working
with the file. The write method puts data into the file:

>>> line1 = "This here's the wattle,\n"

>>> fout.write(line1)

24

The return value is the number of characters that were
written. The file object keeps track of where it is, so if you
call write again, it adds the new data to the end of the file:

>>> line2 = "the emblem of our land.\n"

>>> fout.write(line2)

24

When you are done writing, you should close the file:

>>> fout.close()

If you don’t close the file, it gets closed for you when the
program ends.

Format Operator

The argument of write has to be a string, so if we want to
put other values in a file, we have to convert them to
strings. The easiest way to do that is with str:

>>> x = 52

>>> fout.write(str(x))

An alternative is to use the format operator, %. When
applied to integers, % is the modulus operator. But when
the first operand is a string, % is the format operator.
The first operand is the format string, which contains one
or more format sequences, which specify how the second
operand is formatted. The result is a string.
For example, the format sequence '%d' means that the
second operand should be formatted as a decimal integer:

>>> camels = 42

>>> '%d' % camels

'42'

The result is the string '42', which is not to be confused
with the integer value 42.
A format sequence can appear anywhere in the string, so
you can embed a value in a sentence:

>>> 'I have spotted %d camels.' % camels

'I have spotted 42 camels.'

If there is more than one format sequence in the string, the
second argument has to be a tuple. Each format sequence
is matched with an element of the tuple, in order.

The following example uses '%d' to format an integer, '%g'
to format a floating-point number, and '%s' to format a
string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple has to match the
number of format sequences in the string. Also, the types of
the elements have to match the format sequences:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in the
second, the element is the wrong type.
For more information on the format operator, see
https://docs.python.org/3/library/stdtypes.html#printf-style-

string-formatting. A more powerful alternative is the string
format method, which you can read about at
https://docs.python.org/3/library/stdtypes.html#str.format.

Filenames and Paths

Files are organized into directories (also called “folders”).
Every running program has a “current directory”, which is
the default directory for most operations. For example,
when you open a file for reading, Python looks for it in the
current directory.
The os module provides functions for working with files and
directories (“os” stands for “operating system”). os.getcwd
returns the name of the current directory:

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format

>>> import os

>>> cwd = os.getcwd()

>>> cwd

'/home/dinsdale'

cwd stands for “current working directory”. The result in
this example is /home/dinsdale, which is the home directory
of a user named dinsdale.
A string like '/home/dinsdale' that identifies a file or
directory is called a path.
A simple filename, like memo.txt, is also considered a path,
but it is a relative path because it relates to the current
directory. If the current directory is /home/dinsdale, the
filename memo.txt would refer to /home/dinsdale/memo.txt.
A path that begins with / does not depend on the current
directory; it is called an absolute path. To find the
absolute path to a file, you can use os.path.abspath:

>>> os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

os.path provides other functions for working with filenames
and paths. For example, os.path.exists checks whether a
file or directory exists:

>>> os.path.exists('memo.txt')

True

If it exists, os.path.isdir checks whether it’s a directory:

>>> os.path.isdir('memo.txt')

False

>>> os.path.isdir('/home/dinsdale')

True

Similarly, os.path.isfile checks whether it’s a file.
os.listdir returns a list of the files (and other directories)
in the given directory:

>>> os.listdir(cwd)

['music', 'photos', 'memo.txt']

To demonstrate these functions, the following example
“walks” through a directory, prints the names of all the
files, and calls itself recursively on all the directories:

def walk(dirname):

 for name in os.listdir(dirname):

 path = os.path.join(dirname, name)

 if os.path.isfile(path):

 print(path)

 else:

 walk(path)

os.path.join takes a directory and a filename and joins them
into a complete path.
The os module provides a function called walk that is similar
to this one but more versatile. As an exercise, read the
documentation and use it to print the names of the files in a
given directory and its subdirectories. You can download
my solution from http://thinkpython2.com/code/walk.py.

Catching Exceptions

A lot of things can go wrong when you try to read and write
files. If you try to open a file that doesn’t exist, you get an
IOError:

>>> fin = open('bad_file')

IOError: [Errno 2] No such file or directory: 'bad_file'

http://thinkpython2.com/code/walk.py

If you don’t have permission to access a file:

>>> fout = open('/etc/passwd', 'w')

PermissionError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get

>>> fin = open('/home')

IsADirectoryError: [Errno 21] Is a directory: '/home'

To avoid these errors, you could use functions like
os.path.exists and os.path.isfile, but it would take a lot of
time and code to check all the possibilities (if “Errno 21” is
any indication, there are at least 21 things that can go
wrong).
It is better to go ahead and try—and deal with problems if
they happen—which is exactly what the try statement does.
The syntax is similar to an if...else statement:

try:

 fin = open('bad_file')

except:

 print('Something went wrong.')

Python starts by executing the try clause. If all goes well, it
skips the except clause and proceeds. If an exception
occurs, it jumps out of the try clause and runs the except
clause.
Handling an exception with a try statement is called
catching an exception. In this example, the except clause
prints an error message that is not very helpful. In general,
catching an exception gives you a chance to fix the
problem, or try again, or at least end the program
gracefully.

Databases

A database is a file that is organized for storing data.
Many databases are organized like a dictionary in the sense
that they map from keys to values. The biggest difference
between a database and a dictionary is that the database is
on disk (or other permanent storage), so it persists after
the program ends.
The module dbm provides an interface for creating and
updating database files. As an example, I’ll create a
database that contains captions for image files.
Opening a database is similar to opening other files:

>>> import dbm

>>> db = dbm.open('captions', 'c')

The mode 'c' means that the database should be created if
it doesn’t already exist. The result is a database object that
can be used (for most operations) like a dictionary.
When you create a new item, dbm updates the database file:

>>> db['cleese.png'] = 'Photo of John Cleese.'

When you access one of the items, dbm reads the file:

>>> db['cleese.png']

b'Photo of John Cleese.'

The result is a bytes object, which is why it begins with b.
A bytes object is similar to a string in many ways. When you
get farther into Python, the difference becomes important,
but for now we can ignore it.
If you make another assignment to an existing key, dbm
replaces the old value:

>>> db['cleese.png'] = 'Photo of John Cleese doing a silly walk.'

>>> db['cleese.png']

b'Photo of John Cleese doing a silly walk.'

Some dictionary methods, like keys and items, don’t work
with database objects. But iteration with a for loop works:

for key in db:

 print(key, db[key])

As with other files, you should close the database when you
are done:

>>> db.close()

Pickling

A limitation of dbm is that the keys and values have to be
strings or bytes. If you try to use any other type, you get an
error.
The pickle module can help. It translates almost any type of
object into a string suitable for storage in a database, and
then translates strings back into objects.
pickle.dumps takes an object as a parameter and returns a
string representation (dumps is short for “dump string”):

>>> import pickle

>>> t = [1, 2, 3]

>>> pickle.dumps(t)

b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

The format isn’t obvious to human readers; it is meant to be
easy for pickle to interpret. pickle.loads (“load string”)
reconstitutes the object:

>>> t1 = [1, 2, 3]

>>> s = pickle.dumps(t1)

>>> t2 = pickle.loads(s)

>>> t2

[1, 2, 3]

Although the new object has the same value as the old, it is
not (in general) the same object:

>>> t1 == t2

True

>>> t1 is t2

False

In other words, pickling and then unpickling has the same
effect as copying the object.
You can use pickle to store non-strings in a database. In
fact, this combination is so common that it has been
encapsulated in a module called shelve.

Pipes

Most operating systems provide a command-line interface,
also known as a shell. Shells usually provide commands to
navigate the file system and launch applications. For
example, in Unix you can change directories with cd,
display the contents of a directory with ls, and launch a
web browser by typing (for example) firefox.
Any program that you can launch from the shell can also be
launched from Python using a pipe object, which
represents a running program.
For example, the Unix command ls -l normally displays the
contents of the current directory in long format. You can
launch ls with os.popen1:

>>> cmd = 'ls -l'

>>> fp = os.popen(cmd)

The argument is a string that contains a shell command.
The return value is an object that behaves like an open file.
You can read the output from the ls process one line at a
time with readline or get the whole thing at once with read:

>>> res = fp.read()

When you are done, you close the pipe like a file:

>>> stat = fp.close()

>>> print(stat)

None

The return value is the final status of the ls process; None
means that it ended normally (with no errors).
For example, most Unix systems provide a command called
md5sum that reads the contents of a file and computes a
“checksum”. You can read about MD5 at
http://en.wikipedia.org/wiki/Md5. This command provides
an efficient way to check whether two files have the same
contents. The probability that different contents yield the
same checksum is very small (that is, unlikely to happen
before the universe collapses).
You can use a pipe to run md5sum from Python and get the
result:

>>> filename = 'book.tex'

>>> cmd = 'md5sum ' + filename

>>> fp = os.popen(cmd)

>>> res = fp.read()

>>> stat = fp.close()

>>> print(res)

1e0033f0ed0656636de0d75144ba32e0 book.tex

http://en.wikipedia.org/wiki/Md5

>>> print(stat)

None

Writing Modules

Any file that contains Python code can be imported as a
module. For example, suppose you have a file named wc.py
with the following code:

def linecount(filename):

 count = 0

 for line in open(filename):

 count += 1

 return count

print(linecount('wc.py'))

If you run this program, it reads itself and prints the
number of lines in the file, which is 7. You can also import
it like this:

>>> import wc

7

Now you have a module object wc:

>>> wc

<module 'wc' from 'wc.py'>

The module object provides linecount:

>>> wc.linecount('wc.py')

7

So that’s how you write modules in Python.
The only problem with this example is that when you
import the module it runs the test code at the bottom.

Normally when you import a module, it defines new
functions but it doesn’t run them.
Programs that will be imported as modules often use the
following idiom:

if __name__ == '__main__':

 print(linecount('wc.py'))

__name__ is a built-in variable that is set when the program
starts. If the program is running as a script, __name__ has
the value '__main__'; in that case, the test code runs.
Otherwise, if the module is being imported, the test code is
skipped.
As an exercise, type this example into a file named wc.py
and run it as a script. Then run the Python interpreter and
import wc. What is the value of __name__ when the module is
being imported?
Warning: If you import a module that has already been
imported, Python does nothing. It does not re-read the file,
even if it has changed.
If you want to reload a module, you can use the built-in
function reload, but it can be tricky, so the safest thing to
do is restart the interpreter and then import the module
again.

Debugging

When you are reading and writing files, you might run into
problems with whitespace. These errors can be hard to
debug because spaces, tabs and newlines are normally
invisible:

>>> s = '1 2\t 3\n 4'

>>> print(s)

1 2	 3

 4

The built-in function repr can help. It takes any object as an
argument and returns a string representation of the object.
For strings, it represents whitespace characters with
backslash sequences:

>>> print(repr(s))

'1 2\t 3\n 4'

This can be helpful for debugging.
One other problem you might run into is that different
systems use different characters to indicate the end of a
line. Some systems use a newline, represented \n. Others
use a return character, represented \r. Some use both. If
you move files between different systems, these
inconsistencies can cause problems.
For most systems, there are applications to convert from
one format to another. You can find them (and read more
about this issue) at http://en.wikipedia.org/wiki/Newline.
Or, of course, you could write one yourself.

Glossary

persistent:
Pertaining to a program that runs indefinitely and keeps
at least some of its data in permanent storage.

format operator:
An operator, %, that takes a format string and a tuple
and generates a string that includes the elements of the

http://en.wikipedia.org/wiki/Newline

tuple formatted as specified by the format string.

format string:
A string, used with the format operator, that contains
format sequences.

format sequence:
A sequence of characters in a format string, like %d, that
specifies how a value should be formatted.

text file:
A sequence of characters stored in permanent storage
like a hard drive.

directory:
A named collection of files, also called a folder.

path:
A string that identifies a file.

relative path:
A path that starts from the current directory.

absolute path:
A path that starts from the topmost directory in the file
system.

catch:
To prevent an exception from terminating a program by
using the try and except statements.

database:
A file whose contents are organized like a dictionary
with keys that correspond to values.

bytes object:
An object similar to a string.

shell:
A program that allows users to type commands and then
executes them by starting other programs.

pipe object:
An object that represents a running program, allowing a
Python program to run commands and read the results.

Exercises

Exercise 14-1.

Write a function called sed that takes as arguments a
pattern string, a replacement string, and two filenames; it
should read the first file and write the contents into the
second file (creating it if necessary). If the pattern string
appears anywhere in the file, it should be replaced with the
replacement string.
If an error occurs while opening, reading, writing or closing
files, your program should catch the exception, print an
error message, and exit.
Solution: http://thinkpython2.com/code/sed.py.

Exercise 14-2.

If you download my solution to Exercise 12-2 from
http://thinkpython2.com/code/anagram_sets.py, you’ll see
that it creates a dictionary that maps from a sorted string
of letters to the list of words that can be spelled with those
letters. For example, 'opst' maps to the list ['opts', 'post',
'pots', 'spot', 'stop', 'tops'].

http://thinkpython2.com/code/sed.py
http://thinkpython2.com/code/anagram_sets.py

Write a module that imports anagram_sets and provides two
new functions: store_anagrams should store the anagram
dictionary in a “shelf”; read_anagrams should look up a word
and return a list of its anagrams.
Solution: http://thinkpython2.com/code/anagram_db.py

Exercise 14-3.

In a large collection of MP3 files, there may be more than
one copy of the same song, stored in different directories or
with different filenames. The goal of this exercise is to
search for duplicates.

1. Write a program that searches a directory and all of its
subdirectories, recursively, and returns a list of
complete paths for all files with a given suffix (like
.mp3). Hint: os.path provides several useful functions for
manipulating file- and path names.

2. To recognize duplicates, you can use md5sum to compute
a “checksum” for each files. If two files have the same
checksum, they probably have the same contents.

3. To double-check, you can use the Unix command diff.
Solution: http://thinkpython2.com/code/find_duplicates.py.
1 popen is deprecated now, which means we are supposed to
stop using it and start using the subprocess module. But for
simple cases, I find subprocess more complicated than
necessary. So I am going to keep using popen until they take
it away.

http://thinkpython2.com/code/anagram_db.py
http://thinkpython2.com/code/find_duplicates.py

Chapter 15. Classes and

Objects

At this point you know how to use functions to organize
code and built-in types to organize data. The next step is to
learn “object-oriented programming”, which uses
programmer-defined types to organize both code and data.
Object-oriented programming is a big topic; it will take a
few chapters to get there.
Code examples from this chapter are available from
http://thinkpython2.com/code/Point1.py; solutions to the
exercises are available from
http://thinkpython2.com/code/Point1_soln.py.

Programmer-Defined Types

We have used many of Python’s built-in types; now we are
going to define a new type. As an example, we will create a
type called Point that represents a point in two-dimensional
space.
In mathematical notation, points are often written in
parentheses with a comma separating the coordinates. For
example, (0,0) represents the origin, and (x,y) represents
the point x units to the right and y units up from the origin.
There are several ways we might represent points in
Python:

We could store the coordinates separately in two
variables, x and y.

http://thinkpython2.com/code/Point1.py
http://thinkpython2.com/code/Point1_soln.py

We could store the coordinates as elements in a list or
tuple.
We could create a new type to represent points as
objects.

Creating a new type is more complicated than the other
options, but it has advantages that will be apparent soon.
A programmer-defined type is also called a class. A class
definition looks like this:

class Point:

 """Represents a point in 2-D space."""

The header indicates that the new class is called Point. The
body is a docstring that explains what the class is for. You
can define variables and methods inside a class definition,
but we will get back to that later.
Defining a class named Point creates a class object:

>>> Point

<class '__main__.Point'>

Because Point is defined at the top level, its “full name” is
__main__.Point.
The class object is like a factory for creating objects. To
create a Point, you call Point as if it were a function:

>>> blank = Point()

>>> blank

<__main__.Point object at 0xb7e9d3ac>

The return value is a reference to a Point object, which we
assign to blank.

Creating a new object is called instantiation, and the
object is an instance of the class.
When you print an instance, Python tells you what class it
belongs to and where it is stored in memory (the prefix 0x
means that the following number is in hexadecimal).
Every object is an instance of some class, so “object” and
“instance” are interchangeable. But in this chapter I use
“instance” to indicate that I am talking about a
programmer-defined type.

Attributes

You can assign values to an instance using dot notation:

>>> blank.x = 3.0

>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable
from a module, such as math.pi or string.whitespace. In this
case, though, we are assigning values to named elements of
an object. These elements are called attributes.
As a noun, “AT-trib-ute” is pronounced with emphasis on
the first syllable, as opposed to “a-TRIB-ute”, which is a
verb.
The following diagram shows the result of these
assignments. A state diagram that shows an object and its
attributes is called an object diagram; see Figure 15-1.

Figure 15-1. Object diagram.

The variable blank refers to a Point object, which contains
two attributes. Each attribute refers to a floating-point
number.
You can read the value of an attribute using the same
syntax:

>>> blank.y

4.0

>>> x = blank.x

>>> x

3.0

The expression blank.x means, “Go to the object blank refers
to and get the value of x.” In the example, we assign that
value to a variable named x. There is no conflict between
the variable x and the attribute x.
You can use dot notation as part of any expression. For
example:

>>> '(%g, %g)' % (blank.x, blank.y)

'(3.0, 4.0)'

>>> distance = math.sqrt(blank.x**2 + blank.y**2)

>>> distance

5.0

You can pass an instance as an argument in the usual way.
For example:

def print_point(p):

 print('(%g, %g)' % (p.x, p.y))

print_point takes a point as an argument and displays it in
mathematical notation. To invoke it, you can pass blank as
an argument:

>>> print_point(blank)

(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function
modifies p, blank changes.
As an exercise, write a function called
distance_between_points that takes two Points as arguments
and returns the distance between them.

Rectangles

Sometimes it is obvious what the attributes of an object
should be, but other times you have to make decisions. For
example, imagine you are designing a class to represent
rectangles. What attributes would you use to specify the
location and size of a rectangle? You can ignore angle; to
keep things simple, assume that the rectangle is either
vertical or horizontal.
There are at least two possibilities:

You could specify one corner of the rectangle (or the
center), the width, and the height.
You could specify two opposing corners.

At this point it is hard to say whether either is better than
the other, so we’ll implement the first one, just as an
example.
Here is the class definition:

class Rectangle:

 """Represents a rectangle.

 attributes: width, height, corner.

 """

The docstring lists the attributes: width and height are
numbers; corner is a Point object that specifies the lower-
left corner.
To represent a rectangle, you have to instantiate a
Rectangle object and assign values to the attributes:

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box
refers to and select the attribute named corner; then go to
that object and select the attribute named x.”
Figure 15-2 shows the state of this object. An object that is
an attribute of another object is embedded.

Figure 15-2. Object diagram.

Instances as Return Values

Functions can return instances. For example, find_center
takes a Rectangle as an argument and returns a Point that
contains the coordinates of the center of the Rectangle:

def find_center(rect):

 p = Point()

 p.x = rect.corner.x + rect.width/2

 p.y = rect.corner.y + rect.height/2

 return p

Here is an example that passes box as an argument and
assigns the resulting Point to center:

>>> center = find_center(box)

>>> print_point(center)

(50, 100)

Objects Are Mutable

You can change the state of an object by making an
assignment to one of its attributes. For example, to change

the size of a rectangle without changing its position, you
can modify the values of width and height:

box.width = box.width + 50

box.height = box.height + 100

You can also write functions that modify objects. For
example, grow_rectangle takes a Rectangle object and two
numbers, dwidth and dheight, and adds the numbers to the
width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight):

 rect.width += dwidth

 rect.height += dheight

Here is an example that demonstrates the effect:

>>> box.width, box.height

(150.0, 300.0)

>>> grow_rectangle(box, 50, 100)

>>> box.width, box.height

(200.0, 400.0)

Inside the function, rect is an alias for box, so when the
function modifies rect, box changes.
As an exercise, write a function named move_rectangle that
takes a Rectangle and two numbers named dx and dy. It
should change the location of the rectangle by adding dx to
the x coordinate of corner and adding dy to the y coordinate
of corner.

Copying

Aliasing can make a program difficult to read because
changes in one place might have unexpected effects in

another place. It is hard to keep track of all the variables
that might refer to a given object.
Copying an object is often an alternative to aliasing. The
copy module contains a function called copy that can
duplicate any object:

>>> p1 = Point()

>>> p1.x = 3.0

>>> p1.y = 4.0

>>> import copy

>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same
Point:

>>> print_point(p1)

(3, 4)

>>> print_point(p2)

(3, 4)

>>> p1 is p2

False

>>> p1 == p2

False

The is operator indicates that p1 and p2 are not the same
object, which is what we expected. But you might have
expected == to yield True because these points contain the
same data. In that case, you will be disappointed to learn
that for instances, the default behavior of the == operator is
the same as the is operator; it checks object identity, not
object equivalence. That’s because for programmer-defined
types, Python doesn’t know what should be considered
equivalent. At least, not yet.
If you use copy.copy to duplicate a Rectangle, you will find
that it copies the Rectangle object but not the embedded
Point:

>>> box2 = copy.copy(box)

>>> box2 is box

False

>>> box2.corner is box.corner

True

Figure 15-3 shows what the object diagram looks like. This
operation is called a shallow copy because it copies the
object and any references it contains, but not the
embedded objects.

Figure 15-3. Object diagram.

For most applications, this is not what you want. In this
example, invoking grow_rectangle on one of the Rectangles
would not affect the other, but invoking move_rectangle on
either would affect both! This behavior is confusing and
error-prone.
Fortunately, the copy module provides a method named
deepcopy that copies not only the object but also the objects
it refers to, and the objects they refer to, and so on. You
will not be surprised to learn that this operation is called a
deep copy.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.corner is box.corner

False

box3 and box are completely separate objects.

As an exercise, write a version of move_rectangle that
creates and returns a new Rectangle instead of modifying
the old one.

Debugging

When you start working with objects, you are likely to
encounter some new exceptions. If you try to access an
attribute that doesn’t exist, you get an AttributeError:

>>> p = Point()

>>> p.x = 3

>>> p.y = 4

>>> p.z

AttributeError: Point instance has no attribute 'z'

If you are not sure what type an object is, you can ask:

>>> type(p)

<class '__main__.Point'>

You can also use isinstance to check whether an object is
an instance of a class:

>>> isinstance(p, Point)

True

If you are not sure whether an object has a particular
attribute, you can use the built-in function hasattr:

>>> hasattr(p, 'x')

True

>>> hasattr(p, 'z')

False

The first argument can be any object; the second argument
is a string that contains the name of the attribute.

You can also use a try statement to see if the object has the
attributes you need:

try:

 x = p.x

except AttributeError:

 x = 0

This approach can make it easier to write functions that
work with different types; more on that topic is coming up
in “Polymorphism”.

Glossary

class:
A programmer-defined type. A class definition creates a
new class object.

class object:
An object that contains information about a
programmer-defined type. The class object can be used
to create instances of the type.

instance:
An object that belongs to a class.

instantiate:
To create a new object.

attribute:
One of the named values associated with an object.

embedded object:
An object that is stored as an attribute of another object.

shallow copy:
To copy the contents of an object, including any
references to embedded objects; implemented by the
copy function in the copy module.

deep copy:
To copy the contents of an object as well as any
embedded objects, and any objects embedded in them,
and so on; implemented by the deepcopy function in the
copy module.

object diagram:
A diagram that shows objects, their attributes, and the
values of the attributes.

Exercises

Exercise 15-1.

Write a definition for a class named Circle with attributes
center and radius, where center is a Point object and radius
is a number.
Instantiate a Circle object that represents a circle with its
center at and radius 75.
Write a function named point_in_circle that takes a Circle
and a Point and returns True if the Point lies in or on the
boundary of the circle.
Write a function named rect_in_circle that takes a Circle
and a Rectangle and returns True if the Rectangle lies
entirely in or on the boundary of the circle.

Write a function named rect_circle_overlap that takes a
Circle and a Rectangle and returns True if any of the
corners of the Rectangle fall inside the circle. Or as a more
challenging version, return True if any part of the
Rectangle falls inside the circle.
Solution: http://thinkpython2.com/code/Circle.py.

Exercise 15-2.

Write a function called draw_rect that takes a Turtle object
and a Rectangle and uses the Turtle to draw the Rectangle.
See Chapter 4 for examples using Turtle objects.
Write a function called draw_circle that takes a Turtle and a
Circle and draws the Circle.
Solution: http://thinkpython2.com/code/draw.py.

http://thinkpython2.com/code/Circle.py
http://thinkpython2.com/code/draw.py

Chapter 16. Classes and

Functions

Now that we know how to create new types, the next step
is to write functions that take programmer-defined objects
as parameters and return them as results. In this chapter I
also present “functional programming style” and two new
program development plans.
Code examples from this chapter are available from
http://thinkpython2.com/code/Time1.py. Solutions to the
exercises are at
http://thinkpython2.com/code/Time1_soln.py.

Time

As another example of a programmer-defined type, we’ll
define a class called Time that records the time of day. The
class definition looks like this:

class Time:

 """Represents the time of day.

 attributes: hour, minute, second

 """

We can create a new Time object and assign attributes for
hours, minutes, and seconds:

time = Time()

time.hour = 11

time.minute = 59

time.second = 30

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py

The state diagram for the Time object looks like Figure 16-1.
As an exercise, write a function called print_time that takes
a Time object and prints it in the form hour:minute:second.
Hint: the format sequence '%.2d' prints an integer using at
least two digits, including a leading zero if necessary.
Write a boolean function called is_after that takes two
Time objects, t1 and t2, and returns True if t1 follows t2
chronologically and False otherwise. Challenge: don’t use
an if statement.

Figure 16-1. Object diagram.

Pure Functions

In the next few sections, we’ll write two functions that add
time values. They demonstrate two kinds of functions: pure
functions and modifiers. They also demonstrate a
development plan I’ll call prototype and patch, which is a
way of tackling a complex problem by starting with a

simple prototype and incrementally dealing with the
complications.
Here is a simple prototype of add_time:

def add_time(t1, t2):

 sum = Time()

 sum.hour = t1.hour + t2.hour

 sum.minute = t1.minute + t2.minute

 sum.second = t1.second + t2.second

 return sum

The function creates a new Time object, initializes its
attributes, and returns a reference to the new object. This
is called a pure function because it does not modify any of
the objects passed to it as arguments and it has no effect,
like displaying a value or getting user input, other than
returning a value.
To test this function, I’ll create two Time objects: start
contains the start time of a movie, like Monty Python and

the Holy Grail, and duration contains the runtime of the
movie, which is 1 hour 35 minutes.
add_time figures out when the movie will be done:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 0

>>> duration = Time()

>>> duration.hour = 1

>>> duration.minute = 35

>>> duration.second = 0

>>> done = add_time(start, duration)

>>> print_time(done)

10:80:00

The result, 10:80:00, might not be what you were hoping
for. The problem is that this function does not deal with
cases where the number of seconds or minutes adds up to
more than sixty. When that happens, we have to “carry” the
extra seconds into the minute column or the extra minutes
into the hour column.
Here’s an improved version:

def add_time(t1, t2):

 sum = Time()

 sum.hour = t1.hour + t2.hour

 sum.minute = t1.minute + t2.minute

 sum.second = t1.second + t2.second

 if sum.second >= 60:

 sum.second -= 60

 sum.minute += 1

 if sum.minute >= 60:

 sum.minute -= 60

 sum.hour += 1

 return sum

Although this function is correct, it is starting to get big.
We will see a shorter alternative later.

Modifiers

Sometimes it is useful for a function to modify the objects it
gets as parameters. In that case, the changes are visible to
the caller. Functions that work this way are called
modifiers.
increment, which adds a given number of seconds to a Time
object, can be written naturally as a modifier. Here is a
rough draft:

def increment(time, seconds):

 time.second += seconds

 if time.second >= 60:

 time.second -= 60

 time.minute += 1

 if time.minute >= 60:

 time.minute -= 60

 time.hour += 1

The first line performs the basic operation; the remainder
deals with the special cases we saw before.
Is this function correct? What happens if seconds is much
greater than 60?
In that case, it is not enough to carry once; we have to keep
doing it until time.second is less than 60. One solution is to
replace the if statements with while statements. That
would make the function correct, but not very efficient. As
an exercise, write a correct version of increment that doesn’t
contain any loops.
Anything that can be done with modifiers can also be done
with pure functions. In fact, some programming languages
only allow pure functions. There is some evidence that
programs that use pure functions are faster to develop and
less error-prone than programs that use modifiers. But
modifiers are convenient at times, and functional programs
tend to be less efficient.
In general, I recommend that you write pure functions
whenever it is reasonable and resort to modifiers only if
there is a compelling advantage. This approach might be
called a functional programming style.
As an exercise, write a “pure” version of increment that
creates and returns a new Time object rather than
modifying the parameter.

Prototyping versus Planning

The development plan I am demonstrating is called
“prototype and patch”. For each function, I wrote a
prototype that performed the basic calculation and then
tested it, patching errors along the way.
This approach can be effective, especially if you don’t yet
have a deep understanding of the problem. But incremental
corrections can generate code that is unnecessarily
complicated (since it deals with many special cases) and
unreliable (since it is hard to know if you have found all the
errors).
An alternative is designed development, in which high-
level insight into the problem can make the programming
much easier. In this case, the insight is that a Time object
is really a three-digit number in base 60 (see
http://en.wikipedia.org/wiki/Sexagesimal.)! The second
attribute is the “ones column”, the minute attribute is the
“sixties column”, and the hour attribute is the “thirty-six
hundreds column”.
When we wrote add_time and increment, we were effectively
doing addition in base 60, which is why we had to carry
from one column to the next.
This observation suggests another approach to the whole
problem—we can convert Time objects to integers and take
advantage of the fact that the computer knows how to do
integer arithmetic.
Here is a function that converts Times to integers:

def time_to_int(time):

 minutes = time.hour * 60 + time.minute

 seconds = minutes * 60 + time.second

 return seconds

http://en.wikipedia.org/wiki/Sexagesimal

And here is a function that converts an integer to a Time
(recall that divmod divides the first argument by the second
and returns the quotient and remainder as a tuple):

def int_to_time(seconds):

 time = Time()

 minutes, time.second = divmod(seconds, 60)

 time.hour, time.minute = divmod(minutes, 60)

 return time

You might have to think a bit, and run some tests, to
convince yourself that these functions are correct. One way
to test them is to check that time_to_int(int_to_time(x)) ==
x for many values of x. This is an example of a consistency
check.
Once you are convinced they are correct, you can use them
to rewrite add_time:

def add_time(t1, t2):

 seconds = time_to_int(t1) + time_to_int(t2)

 return int_to_time(seconds)

This version is shorter than the original, and easier to
verify. As an exercise, rewrite increment using time_to_int
and int_to_time.
In some ways, converting from base 60 to base 10 and back
is harder than just dealing with times. Base conversion is
more abstract; our intuition for dealing with time values is
better.
But if we have the insight to treat times as base 60
numbers and make the investment of writing the
conversion functions (time_to_int and int_to_time), we get a
program that is shorter, easier to read and debug, and
more reliable.

It is also easier to add features later. For example, imagine
subtracting two Times to find the duration between them.
The naive approach would be to implement subtraction
with borrowing. Using the conversion functions would be
easier and more likely to be correct.
Ironically, sometimes making a problem harder (or more
general) makes it easier (because there are fewer special
cases and fewer opportunities for error).

Debugging

A Time object is well-formed if the values of minute and
second are between 0 and 60 (including 0 but not 60) and if
hour is positive. hour and minute should be integral values,
but we might allow second to have a fraction part.
Requirements like these are called invariants because
they should always be true. To put it a different way, if they
are not true, something has gone wrong.
Writing code to check invariants can help detect errors and
find their causes. For example, you might have a function
like valid_time that takes a Time object and returns False if
it violates an invariant:

def valid_time(time):

 if time.hour < 0 or time.minute < 0 or time.second < 0:

 return False

 if time.minute >= 60 or time.second >= 60:

 return False

 return True

At the beginning of each function you could check the
arguments to make sure they are valid:

def add_time(t1, t2):

 if not valid_time(t1) or not valid_time(t2):

 raise ValueError('invalid Time object in add_time')

 seconds = time_to_int(t1) + time_to_int(t2)

 return int_to_time(seconds)

Or you could use an assert statement, which checks a
given invariant and raises an exception if it fails:

def add_time(t1, t2):

 assert valid_time(t1) and valid_time(t2)

 seconds = time_to_int(t1) + time_to_int(t2)

 return int_to_time(seconds)

assert statements are useful because they distinguish code
that deals with normal conditions from code that checks for
errors.

Glossary

prototype and patch:
A development plan that involves writing a rough draft
of a program, testing, and correcting errors as they are
found.

designed development:
A development plan that involves high-level insight into
the problem and more planning than incremental
development or prototype development.

pure function:
A function that does not modify any of the objects it
receives as arguments. Most pure functions are fruitful.

modifier:

A function that changes one or more of the objects it
receives as arguments. Most modifiers are void; that is,
they return None.

functional programming style:
A style of program design in which the majority of
functions are pure.

invariant:
A condition that should always be true during the
execution of a program.

assert statement:
A statement that check a condition and raises an
exception if it fails.

Exercises

Code examples from this chapter are available from
http://thinkpython2.com/code/Time1.py; solutions to the
exercises are available from
http://thinkpython2.com/code/Time1_soln.py.
Exercise 16-1.

Write a function called mul_time that takes a Time object
and a number and returns a new Time object that contains
the product of the original Time and the number.
Then use mul_time to write a function that takes a Time
object that represents the finishing time in a race, and a
number that represents the distance, and returns a Time
object that represents the average pace (time per mile).

Exercise 16-2.

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py

The datetime module provides time objects that are similar
to the Time objects in this chapter, but they provide a rich
set of methods and operators. Read the documentation at
http://docs.python.org/3/library/datetime.html.

1. Use the datetime module to write a program that gets
the current date and prints the day of the week.

2. Write a program that takes a birthday as input and
prints the user’s age and the number of days, hours,
minutes and seconds until their next birthday.

3. For two people born on different days, there is a day
when one is twice as old as the other. That’s their
Double Day. Write a program that takes two birthdays
and computes their Double Day.

4. For a little more challenge, write the more general
version that computes the day when one person is n
times older than the other.

Solution: http://thinkpython2.com/code/double.py.

http://docs.python.org/3/library/datetime.html
http://thinkpython2.com/code/double.py

Chapter 17. Classes and

Methods

Although we are using some of Python’s object-oriented
features, the programs from the last two chapters are not
really object-oriented because they don’t represent the
relationships between programmer-defined types and the
functions that operate on them. The next step is to
transform those functions into methods that make the
relationships explicit.
Code examples from this chapter are available from
http://thinkpython2.com/code/Time2.py, and solutions to
the exercises are in
http://thinkpython2.com/code/Point2_soln.py.

Object-Oriented Features

Python is an object-oriented programming language,
which means that it provides features that support object-
oriented programming, which has these defining
characteristics:

Programs include class and method definitions.
Most of the computation is expressed in terms of
operations on objects.
Objects often represent things in the real world, and
methods often correspond to the ways things in the real
world interact.

For example, the Time class defined in Chapter 16
corresponds to the way people record the time of day, and

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Point2_soln.py

the functions we defined correspond to the kinds of things
people do with times. Similarly, the Point and Rectangle
classes in Chapter 15 correspond to the mathematical
concepts of a point and a rectangle.
So far, we have not taken advantage of the features Python
provides to support object-oriented programming. These
features are not strictly necessary; most of them provide
alternative syntax for things we have already done. But in
many cases, the alternative is more concise and more
accurately conveys the structure of the program.
For example, in Time1.py there is no obvious connection
between the class definition and the function definitions
that follow. With some examination, it is apparent that
every function takes at least one Time object as an
argument.
This observation is the motivation for methods; a method
is a function that is associated with a particular class. We
have seen methods for strings, lists, dictionaries and
tuples. In this chapter, we will define methods for
programmer-defined types.
Methods are semantically the same as functions, but there
are two syntactic differences:

Methods are defined inside a class definition in order to
make the relationship between the class and the method
explicit.
The syntax for invoking a method is different from the
syntax for calling a function.

In the next few sections, we will take the functions from the
previous two chapters and transform them into methods.
This transformation is purely mechanical; you can do it by
following a sequence of steps. If you are comfortable

converting from one form to another, you will be able to
choose the best form for whatever you are doing.

Printing Objects

In Chapter 16, we defined a class named Time and in
“Time”, you wrote a function named print_time:

class Time:

 """Represents the time of day."""

def print_time(time):

 print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

To call this function, you have to pass a Time object as an
argument:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

>>> print_time(start)

09:45:00

To make print_time a method, all we have to do is move the
function definition inside the class definition. Notice the
change in indentation.

class Time:

 def print_time(time):

 print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

Now there are two ways to call print_time. The first (and
less common) way is to use function syntax:

>>> Time.print_time(start)

09:45:00

In this use of dot notation, Time is the name of the class, and
print_time is the name of the method. start is passed as a
parameter.
The second (and more concise) way is to use method
syntax:

>>> start.print_time()

09:45:00

In this use of dot notation, print_time is the name of the
method (again), and start is the object the method is
invoked on, which is called the subject. Just as the subject
of a sentence is what the sentence is about, the subject of a
method invocation is what the method is about.
Inside the method, the subject is assigned to the first
parameter, so in this case start is assigned to time.
By convention, the first parameter of a method is called
self, so it would be more common to write print_time like
this:

class Time:

 def print_time(self):

 print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

The reason for this convention is an implicit metaphor:
The syntax for a function call, print_time(start), suggests
that the function is the active agent. It says something
like, “Hey print_time! Here’s an object for you to print.”
In object-oriented programming, the objects are the
active agents. A method invocation like start.print_time()
says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is
not obvious that it is useful. In the examples we have seen
so far, it may not be. But sometimes shifting responsibility
from the functions onto the objects makes it possible to
write more versatile functions (or methods), and makes it
easier to maintain and reuse code.
As an exercise, rewrite time_to_int (from “Prototyping
versus Planning”) as a method. You might be tempted to
rewrite int_to_time as a method, too, but that doesn’t really
make sense because there would be no object to invoke it
on.

Another Example

Here’s a version of increment (from “Modifiers”) rewritten
as a method:

inside class Time:

 def increment(self, seconds):

 seconds += self.time_to_int()

 return int_to_time(seconds)

This version assumes that time_to_int is written as a
method. Also, note that it is a pure function, not a modifier.
Here’s how you would invoke increment:

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)

>>> end.print_time()

10:07:17

The subject, start, gets assigned to the first parameter,
self. The argument, 1337, gets assigned to the second

parameter, seconds.
This mechanism can be confusing, especially if you make an
error. For example, if you invoke increment with two
arguments, you get:

>>> end = start.increment(1337, 460)

TypeError: increment() takes 2 positional arguments but 3 were given

The error message is initially confusing, because there are
only two arguments in parentheses. But the subject is also
considered an argument, so all together that’s three.
By the way, a positional argument is an argument that
doesn’t have a parameter name; that is, it is not a keyword
argument. In this function call:

sketch(parrot, cage, dead=True)

parrot and cage are positional, and dead is a keyword
argument.

A More Complicated Example

Rewriting is_after (from “Time”) is slightly more
complicated because it takes two Time objects as
parameters. In this case it is conventional to name the first
parameter self and the second parameter other:

inside class Time:

 def is_after(self, other):

 return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and
pass the other as an argument:

>>> end.is_after(start)

True

One nice thing about this syntax is that it almost reads like
English: “end is after start?”

The init Method

The init method (short for “initialization”) is a special
method that gets invoked when an object is instantiated. Its
full name is __init__ (two underscore characters, followed
by init, and then two more underscores). An init method
for the Time class might look like this:

inside class Time:

 def __init__(self, hour=0, minute=0, second=0):

 self.hour = hour

 self.minute = minute

 self.second = second

It is common for the parameters of __init__ to have the
same names as the attributes. The statement

 self.hour = hour

stores the value of the parameter hour as an attribute of
self.
The parameters are optional, so if you call Time with no
arguments, you get the default values:

>>> time = Time()

>>> time.print_time()

00:00:00

If you provide one argument, it overrides hour:

>>> time = Time (9)

>>> time.print_time()

09:00:00

If you provide two arguments, they override hour and
minute:

>>> time = Time(9, 45)

>>> time.print_time()

09:45:00

And if you provide three arguments, they override all three
default values.
As an exercise, write an init method for the Point class that
takes x and y as optional parameters and assigns them to
the corresponding attributes.

The __str__ Method

__str__ is a special method, like __init__, that is supposed
to return a string representation of an object.
For example, here is a str method for Time objects:

inside class Time:

 def __str__(self):

 return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

When you print an object, Python invokes the str method:

>>> time = Time(9, 45)

>>> print(time)

09:45:00

When I write a new class, I almost always start by writing
__init__, which makes it easier to instantiate objects, and

__str__, which is useful for debugging.
As an exercise, write a str method for the Point class.
Create a Point object and print it.

Operator Overloading

By defining other special methods, you can specify the
behavior of operators on programmer-defined types. For
example, if you define a method named __add__ for the Time
class, you can use the + operator on Time objects.
Here is what the definition might look like:

inside class Time:

 def __add__(self, other):

 seconds = self.time_to_int() + other.time_to_int()

 return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

When you apply the + operator to Time objects, Python
invokes __add__. When you print the result, Python invokes
__str__. So there is a lot happening behind the scenes!
Changing the behavior of an operator so that it works with
programmer-defined types is called operator overloading.
For every operator in Python there is a corresponding
special method, like __add__. For more details, see
http://docs.python.org/3/reference/datamodel.html#special

names.

http://docs.python.org/3/reference/datamodel.html#specialnames

As an exercise, write an add method for the Point class.

Type-Based Dispatch

In the previous section we added two Time objects, but you
also might want to add an integer to a Time object. The
following is a version of __add__ that checks the type of
other and invokes either add_time or increment:

inside class Time:

 def __add__(self, other):

 if isinstance(other, Time):

 return self.add_time(other)

 else:

 return self.increment(other)

 def add_time(self, other):

 seconds = self.time_to_int() + other.time_to_int()

 return int_to_time(seconds)

 def increment(self, seconds):

 seconds += self.time_to_int()

 return int_to_time(seconds)

The built-in function isinstance takes a value and a class
object, and returns True if the value is an instance of the
class.
If other is a Time object, __add__ invokes add_time. Otherwise
it assumes that the parameter is a number and invokes
increment. This operation is called a type-based dispatch

because it dispatches the computation to different methods
based on the type of the arguments.
Here are examples that use the + operator with different
types:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

>>> print(start + 1337)

10:07:17

Unfortunately, this implementation of addition is not
commutative. If the integer is the first operand, you get

>>> print(1337 + start)

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

The problem is, instead of asking the Time object to add an
integer, Python is asking an integer to add a Time object,
and it doesn’t know how. But there is a clever solution for
this problem: the special method __radd__, which stands for
“right-side add”. This method is invoked when a Time
object appears on the right side of the + operator. Here’s
the definition:

inside class Time:

 def __radd__(self, other):

 return self.__add__(other)

And here’s how it’s used:

>>> print(1337 + start)

10:07:17

As an exercise, write an add method for Points that works
with either a Point object or a tuple:

If the second operand is a Point, the method should
return a new Point whose x coordinate is the sum of the
x coordinates of the operands, and likewise for the y
coordinates.

If the second operand is a tuple, the method should add
the first element of the tuple to the x coordinate and the
second element to the y coordinate, and return a new
Point with the result.

Polymorphism

Type-based dispatch is useful when it is necessary, but
(fortunately) it is not always necessary. Often you can avoid
it by writing functions that work correctly for arguments
with different types.
Many of the functions we wrote for strings also work for
other sequence types. For example, in “Dictionary as a
Collection of Counters” we used histogram to count the
number of times each letter appears in a word:

def histogram(s):

 d = dict()

 for c in s:

 if c not in d:

 d[c] = 1

 else:

 d[c] = d[c]+1

 return d

This function also works for lists, tuples, and even
dictionaries, as long as the elements of s are hashable, so
they can be used as keys in d:

>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']

>>> histogram(t)

{'bacon': 1, 'egg': 1, 'spam': 4}

Functions that work with several types are called
polymorphic. Polymorphism can facilitate code reuse. For
example, the built-in function sum, which adds the elements

of a sequence, works as long as the elements of the
sequence support addition.
Since Time objects provide an add method, they work with
sum:

>>> t1 = Time(7, 43)

>>> t2 = Time(7, 41)

>>> t3 = Time(7, 37)

>>> total = sum([t1, t2, t3])

>>> print(total)

23:01:00

In general, if all of the operations inside a function work
with a given type, the function works with that type.
The best kind of polymorphism is the unintentional kind,
where you discover that a function you already wrote can
be applied to a type you never planned for.

Interface and Implementation

One of the goals of object-oriented design is to make
software more maintainable, which means that you can
keep the program working when other parts of the system
change, and modify the program to meet new
requirements.
A design principle that helps achieve that goal is to keep
interfaces separate from implementations. For objects, that
means that the methods a class provides should not depend
on how the attributes are represented.
For example, in this chapter we developed a class that
represents a time of day. Methods provided by this class
include time_to_int, is_after, and add_time.
We could implement those methods in several ways. The
details of the implementation depend on how we represent

time. In this chapter, the attributes of a Time object are
hour, minute, and second.
As an alternative, we could replace these attributes with a
single integer representing the number of seconds since
midnight. This implementation would make some methods,
like is_after, easier to write, but it makes other methods
harder.
After you deploy a new class, you might discover a better
implementation. If other parts of the program are using
your class, it might be time-consuming and error-prone to
change the interface.
But if you designed the interface carefully, you can change
the implementation without changing the interface, which
means that other parts of the program don’t have to
change.

Debugging

It is legal to add attributes to objects at any point in the
execution of a program, but if you have objects with the
same type that don’t have the same attributes, it is easy to
make mistakes. It is considered a good idea to initialize all
of an object’s attributes in the init method.
If you are not sure whether an object has a particular
attribute, you can use the built-in function hasattr (see
“Debugging”).
Another way to access attributes is the built-in function
vars, which takes an object and returns a dictionary that
maps from attribute names (as strings) to their values:

>>> p = Point(3, 4)

>>> vars(p)

{'y': 4, 'x': 3}

For purposes of debugging, you might find it useful to keep
this function handy:

def print_attributes(obj):

 for attr in vars(obj):

 print(attr, getattr(obj, attr))

print_attributes traverses the dictionary and prints each
attribute name and its corresponding value.
The built-in function getattr takes an object and an
attribute name (as a string) and returns the attribute’s
value.

Glossary

object-oriented language:
A language that provides features, such as programmer-
defined types and methods, that facilitate object-
oriented programming.

object-oriented programming:
A style of programming in which data and the operations
that manipulate it are organized into classes and
methods.

method:
A function that is defined inside a class definition and is
invoked on instances of that class.

subject:
The object a method is invoked on.

positional argument:

An argument that does not include a parameter name,
so it is not a keyword argument.

operator overloading:
Changing the behavior of an operator like + so it works
with a programmer-defined type.

type-based dispatch:
A programming pattern that checks the type of an
operand and invokes different functions for different
types.

polymorphic:
Pertaining to a function that can work with more than
one type.

information hiding:
The principle that the interface provided by an object
should not depend on its implementation, in particular
the representation of its attributes.

Exercises

Exercise 17-1.

Download the code from this chapter from
http://thinkpython2.com/code/Time2.py. Change the
attributes of Time to be a single integer representing
seconds since midnight. Then modify the methods (and the
function int_to_time) to work with the new implementation.
You should not have to modify the test code in main. When
you are done, the output should be the same as before.
Solution: http://thinkpython2.com/code/Time2_soln.py

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Time2_soln.py

Exercise 17-2.

This exercise is a cautionary tale about one of the most
common, and difficult to find, errors in Python. Write a
definition for a class named Kangaroo with the following
methods:

1. An __init__ method that initializes an attribute named
pouch_contents to an empty list.

2. A method named put_in_pouch that takes an object of
any type and adds it to pouch_contents.

3. A __str__ method that returns a string representation
of the Kangaroo object and the contents of the pouch.

Test your code by creating two Kangaroo objects, assigning
them to variables named kanga and roo, and then adding roo
to the contents of kanga’s pouch.
Download http://thinkpython2.com/code/BadKangaroo.py. It
contains a solution to the previous problem with one big,
nasty bug. Find and fix the bug.
If you get stuck, you can download
http://thinkpython2.com/code/GoodKangaroo.py, which
explains the problem and demonstrates a solution.

http://thinkpython2.com/code/BadKangaroo.py
http://thinkpython2.com/code/GoodKangaroo.py

Chapter 18. Inheritance

The language feature most often associated with object-
oriented programming is inheritance. Inheritance is the
ability to define a new class that is a modified version of an
existing class. In this chapter I demonstrate inheritance
using classes that represent playing cards, decks of cards,
and poker hands.
If you don’t play poker, you can read about it at
http://en.wikipedia.org/wiki/Poker, but you don’t have to;
I’ll tell you what you need to know for the exercises.
Code examples from this chapter are available from
http://thinkpython2.com/code/Card.py.

Card Objects

There are 52 cards in a deck, each of which belongs to 1 of
4 suits and 1 of 13 ranks. The suits are Spades, Hearts,
Diamonds, and Clubs (in descending order in bridge). The
ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and
King. Depending on the game that you are playing, an Ace
may be higher than King or lower than 2.
If we want to define a new object to represent a playing
card, it is obvious what the attributes should be: rank and
suit. It is not as obvious what type the attributes should be.
One possibility is to use strings containing words like
'Spade' for suits and 'Queen' for ranks. One problem with
this implementation is that it would not be easy to compare
cards to see which had a higher rank or suit.

http://en.wikipedia.org/wiki/Poker
http://thinkpython2.com/code/Card.py

An alternative is to use integers to encode the ranks and
suits. In this context, “encode” means that we are going to
define a mapping between numbers and suits, or between
numbers and ranks. This kind of encoding is not meant to
be a secret (that would be “encryption”).
For example, this table shows the suits and the
corresponding integer codes:

Spades ↦ 3

Hearts ↦ 2

Diamonds ↦ 1

Clubs ↦ 0

This code makes it easy to compare cards; because higher
suits map to higher numbers, we can compare suits by
comparing their codes.
The mapping for ranks is fairly obvious; each of the
numerical ranks maps to the corresponding integer, and for
face cards:

Jack ↦ 11

Queen ↦ 12

King ↦ 13

I am using the ↦ symbol to make it clear that these
mappings are not part of the Python program. They are
part of the program design, but they don’t appear explicitly
in the code.
The class definition for Card looks like this:

class Card:

 """Represents a standard playing card."""

 def __init__(self, suit=0, rank=2):

 self.suit = suit

 self.rank = rank

As usual, the init method takes an optional parameter for
each attribute. The default card is the 2 of Clubs.
To create a Card, you call Card with the suit and rank of the
card you want:

queen_of_diamonds = Card(1, 12)

Class Attributes

In order to print Card objects in a way that people can
easily read, we need a mapping from the integer codes to
the corresponding ranks and suits. A natural way to do that
is with lists of strings. We assign these lists to class

attributes:

inside class Card:

 suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

 rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',

 '8', '9', '10', 'Jack', 'Queen', 'King']

 def __str__(self):

 return '%s of %s' % (Card.rank_names[self.rank],

 Card.suit_names[self.suit])

Variables like suit_names and rank_names, which are defined
inside a class but outside of any method, are called class
attributes because they are associated with the class object
Card.
This term distinguishes them from variables like suit and
rank, which are called instance attributes because they
are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For
example, in __str__, self is a Card object, and self.rank is
its rank. Similarly, Card is a class object, and Card.rank_names
is a list of strings associated with the class.
Every card has its own suit and rank, but there is only one
copy of suit_names and rank_names.
Putting it all together, the expression
Card.rank_names[self.rank] means “use the attribute rank
from the object self as an index into the list rank_names from
the class Card, and select the appropriate string.”
The first element of rank_names is None because there is no
card with rank zero. By including None as a place-keeper, we
get a mapping with the nice property that the index 2 maps
to the string '2', and so on. To avoid this tweak, we could
have used a dictionary instead of a list.
With the methods we have so far, we can create and print
cards:

>>> card1 = Card(2, 11)

>>> print(card1)

Jack of Hearts

Figure 18-1 is a diagram of the Card class object and one
Card instance. Card is a class object; its type is type. card1 is
an instance of Card, so its type is Card. To save space, I
didn’t draw the contents of suit_names and rank_names.

Figure 18-1. Object diagram.

Comparing Cards

For built-in types, there are relational operators (<, >, ==,
etc.) that compare values and determine when one is
greater than, less than, or equal to another. For
programmer-defined types, we can override the behavior of
the built-in operators by providing a method named __lt__,
which stands for “less than”.
__lt__ takes two parameters, self and other, and True if self
is strictly less than other.

The correct ordering for cards is not obvious. For example,
which is better, the 3 of Clubs or the 2 of Diamonds? One
has a higher rank, but the other has a higher suit. In order
to compare cards, you have to decide whether rank or suit
is more important.
The answer might depend on what game you are playing,
but to keep things simple, we’ll make the arbitrary choice
that suit is more important, so all of the Spades outrank all
of the Diamonds, and so on.
With that decided, we can write __lt__:

inside class Card:

 def __lt__(self, other):

 # check the suits

 if self.suit < other.suit: return True

 if self.suit > other.suit: return False

 # suits are the same... check ranks

 return self.rank < other.rank

You can write this more concisely using tuple comparison:

inside class Card:

 def __lt__(self, other):

 t1 = self.suit, self.rank

 t2 = other.suit, other.rank

 return t1 < t2

As an exercise, write an __lt__ method for Time objects.
You can use tuple comparison, but you also might consider
comparing integers.

Decks

Now that we have Cards, the next step is to define Decks.
Since a deck is made up of cards, it is natural for each Deck
to contain a list of cards as an attribute.
The following is a class definition for Deck. The init method
creates the attribute cards and generates the standard set
of 52 cards:

class Deck:

 def __init__(self):

 self.cards = []

 for suit in range(4):

 for rank in range(1, 14):

 card = Card(suit, rank)

 self.cards.append(card)

The easiest way to populate the deck is with a nested loop.
The outer loop enumerates the suits from 0 to 3. The inner
loop enumerates the ranks from 1 to 13. Each iteration
creates a new Card with the current suit and rank, and
appends it to self.cards.

Printing the Deck

Here is a __str__ method for Deck:

#inside class Deck:

 def __str__(self):

 res = []

 for card in self.cards:

 res.append(str(card))

 return '\n'.join(res)

This method demonstrates an efficient way to accumulate a
large string: building a list of strings and then using the
string method join. The built-in function str invokes the

__str__ method on each card and returns the string
representation.
Since we invoke join on a newline character, the cards are
separated by newlines. Here’s what the result looks like:

>>> deck = Deck()

>>> print(deck)

Ace of Clubs

2 of Clubs

3 of Clubs

...

10 of Spades

Jack of Spades

Queen of Spades

King of Spades

Even though the result appears on 52 lines, it is one long
string that contains newlines.

Add, Remove, Shuffle and Sort

To deal cards, we would like a method that removes a card
from the deck and returns it. The list method pop provides a
convenient way to do that:

#inside class Deck:

 def pop_card(self):

 return self.cards.pop()

Since pop removes the last card in the list, we are dealing
from the bottom of the deck.
To add a card, we can use the list method append:

#inside class Deck:

 def add_card(self, card):

 self.cards.append(card)

A method like this that uses another method without doing
much work is sometimes called a veneer. The metaphor
comes from woodworking, where a veneer is a thin layer of
good quality wood glued to the surface of a cheaper piece
of wood to improve the appearance.
In this case add_card is a “thin” method that expresses a list
operation in terms appropriate for decks. It improves the
appearance, or interface, of the implementation.
As another example, we can write a Deck method named
shuffle using the function shuffle from the random module:

inside class Deck:

 def shuffle(self):

 random.shuffle(self.cards)

Don’t forget to import random.
As an exercise, write a Deck method named sort that uses
the list method sort to sort the cards in a Deck. sort uses the
__lt__ method we defined to determine the order.

Inheritance

Inheritance is the ability to define a new class that is a
modified version of an existing class. As an example, let’s
say we want a class to represent a “hand”, that is, the cards
held by one player. A hand is similar to a deck: both are
made up of a collection of cards, and both require
operations like adding and removing cards.
A hand is also different from a deck; there are operations
we want for hands that don’t make sense for a deck. For
example, in poker we might compare two hands to see

which one wins. In bridge, we might compute a score for a
hand in order to make a bid.
This relationship between classes—similar, but different—
lends itself to inheritance. To define a new class that
inherits from an existing class, you put the name of the
existing class in parentheses:

class Hand(Deck):

 """Represents a hand of playing cards."""

This definition indicates that Hand inherits from Deck; that
means we can use methods like pop_card and add_card for
Hands as well as Decks.
When a new class inherits from an existing one, the
existing one is called the parent and the new class is called
the child.
In this example, Hand inherits __init__ from Deck, but it
doesn’t really do what we want: instead of populating the
hand with 52 new cards, the init method for Hands should
initialize cards with an empty list.
If we provide an init method in the Hand class, it overrides
the one in the Deck class:

inside class Hand:

 def __init__(self, label=''):

 self.cards = []

 self.label = label

When you create a Hand, Python invokes this init method,
not the one in Deck.

>>> hand = Hand('new hand')

>>> hand.cards

[]

>>> hand.label

'new hand'

The other methods are inherited from Deck, so we can use
pop_card and add_card to deal a card:

>>> deck = Deck()

>>> card = deck.pop_card()

>>> hand.add_card(card)

>>> print(hand)

King of Spades

A natural next step is to encapsulate this code in a method
called move_cards:

#inside class Deck:

 def move_cards(self, hand, num):

 for i in range(num):

 hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the
number of cards to deal. It modifies both self and hand, and
returns None.
In some games, cards are moved from one hand to another,
or from a hand back to the deck. You can use move_cards for
any of these operations: self can be either a Deck or a
Hand, and hand, despite the name, can also be a Deck.
Inheritance is a useful feature. Some programs that would
be repetitive without inheritance can be written more
elegantly with it. Inheritance can facilitate code reuse,
since you can customize the behavior of parent classes
without having to modify them. In some cases, the
inheritance structure reflects the natural structure of the
problem, which makes the design easier to understand.

On the other hand, inheritance can make programs difficult
to read. When a method is invoked, it is sometimes not
clear where to find its definition. The relevant code may be
spread across several modules. Also, many of the things
that can be done using inheritance can be done as well or
better without it.

Class Diagrams

So far we have seen stack diagrams, which show the state
of a program, and object diagrams, which show the
attributes of an object and their values. These diagrams
represent a snapshot in the execution of a program, so they
change as the program runs.
They are also highly detailed; for some purposes, too
detailed. A class diagram is a more abstract representation
of the structure of a program. Instead of showing individual
objects, it shows classes and the relationships between
them.
There are several kinds of relationship between classes:

Objects in one class might contain references to objects
in another class. For example, each Rectangle contains a
reference to a Point, and each Deck contains references
to many Cards. This kind of relationship is called HAS-A,
as in, “a Rectangle has a Point.”
One class might inherit from another. This relationship is
called IS-A, as in, “a Hand is a kind of a Deck.”
One class might depend on another in the sense that
objects in one class take objects in the second class as
parameters, or use objects in the second class as part of
a computation. This kind of relationship is called a
dependency.

A class diagram is a graphical representation of these
relationships. For example, Figure 18-2 shows the
relationships between Card, Deck and Hand.

Figure 18-2. Class diagram.

The arrow with a hollow triangle head represents an IS-A
relationship; in this case it indicates that Hand inherits
from Deck.
The standard arrowhead represents a HAS-A relationship;
in this case a Deck has references to Card objects.
The star (*) near the arrowhead is a multiplicity; it
indicates how many Cards a Deck has. A multiplicity can be
a simple number like 52, a range like 5..7 or a star, which
indicates that a Deck can have any number of Cards.
There are no dependencies in this diagram. They would
normally be shown with a dashed arrow. Or if there are a
lot of dependencies, they are sometimes omitted.

A more detailed diagram might show that a Deck actually
contains a list of Cards, but built-in types like list and dict
are usually not included in class diagrams.

Data Encapsulation

The previous chapters demonstrate a development plan we
might call “object-oriented design”. We identified objects
we needed—like Point, Rectangle and Time—and defined
classes to represent them. In each case there is an obvious
correspondence between the object and some entity in the
real world (or at least a mathematical world).
But sometimes it is less obvious what objects you need and
how they should interact. In that case you need a different
development plan. In the same way that we discovered
function interfaces by encapsulation and generalization, we
can discover class interfaces by data encapsulation.
Markov analysis, from “Markov Analysis”, provides a good
example. If you download my code from
http://thinkpython2.com/code/markov.py, you’ll see that it
uses two global variables—suffix_map and prefix—that are
read and written from several functions.

suffix_map = {}

prefix = ()

Because these variables are global, we can only run one
analysis at a time. If we read two texts, their prefixes and
suffixes would be added to the same data structures (which
makes for some interesting generated text).
To run multiple analyses, and keep them separate, we can
encapsulate the state of each analysis in an object. Here’s
what that looks like:

http://thinkpython2.com/code/markov.py

class Markov:

 def __init__(self):

 self.suffix_map = {}

 self.prefix = ()

Next, we transform the functions into methods. For
example, here’s process_word:

 def process_word(self, word, order=2):

 if len(self.prefix) < order:

 self.prefix += (word,)

 return

 try:

 self.suffix_map[self.prefix].append(word)

 except KeyError:

 # if there is no entry for this prefix, make one

 self.suffix_map[self.prefix] = [word]

 self.prefix = shift(self.prefix, word)

Transforming a program like this—changing the design
without changing the behavior—is another example of
refactoring (see “Refactoring”).
This example suggests a development plan for designing
objects and methods:

1. Start by writing functions that read and write global
variables (when necessary).

2. Once you get the program working, look for
associations between global variables and the
functions that use them.

3. Encapsulate related variables as attributes of an
object.

4. Transform the associated functions into methods of the
new class.

As an exercise, download my Markov code from
http://thinkpython2.com/code/markov.py, and follow the
steps described above to encapsulate the global variables
as attributes of a new class called Markov.
Solution: http://thinkpython2.com/code/Markov.py (note the
capital M).

Debugging

Inheritance can make debugging difficult because when
you invoke a method on an object, it might be hard to
figure out which method will be invoked.
Suppose you are writing a function that works with Hand
objects. You would like it to work with all kinds of Hands,
like PokerHands, BridgeHands, etc. If you invoke a method
like shuffle, you might get the one defined in Deck, but if
any of the subclasses override this method, you’ll get that
version instead. This behavior is usually a good thing, but it
can be confusing.
Any time you are unsure about the flow of execution
through your program, the simplest solution is to add print
statements at the beginning of the relevant methods. If
Deck.shuffle prints a message that says something like
Running Deck.shuffle, then as the program runs it traces the
flow of execution.
As an alternative, you could use this function, which takes
an object and a method name (as a string) and returns the
class that provides the definition of the method:

def find_defining_class(obj, meth_name):

 for ty in type(obj).mro():

 if meth_name in ty.__dict__:

 return ty

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/Markov.py

Here’s an example:

>>> hand = Hand()

>>> find_defining_class(hand, 'shuffle')

<class 'Card.Deck'>

So the shuffle method for this Hand is the one in Deck.
find_defining_class uses the mro method to get the list of
class objects (types) that will be searched for methods.
“MRO” stands for “method resolution order”, which is the
sequence of classes Python searches to “resolve” a method
name.
Here’s a design suggestion: when you override a method,
the interface of the new method should be the same as the
old. It should take the same parameters, return the same
type, and obey the same preconditions and postconditions.
If you follow this rule, you will find that any function
designed to work with an instance of a parent class, like a
Deck, will also work with instances of child classes like a
Hand and PokerHand.
If you violate this rule, which is called the “Liskov
substitution principle”, your code will collapse like (sorry) a
house of cards.

Glossary

encode:
To represent one set of values using another set of
values by constructing a mapping between them.

class attribute:
An attribute associated with a class object. Class
attributes are defined inside a class definition but

outside any method.

instance attribute:
An attribute associated with an instance of a class.

veneer:
A method or function that provides a different interface
to another function without doing much computation.

inheritance:
The ability to define a new class that is a modified
version of a previously defined class.

parent class:
The class from which a child class inherits.

child class:
A new class created by inheriting from an existing class;
also called a “subclass”.

IS-A relationship:
A relationship between a child class and its parent class.

HAS-A relationship:
A relationship between two classes where instances of
one class contain references to instances of the other.

dependency:
A relationship between two classes where instances of
one class use instances of the other class, but do not
store them as attributes.

class diagram:
A diagram that shows the classes in a program and the
relationships between them.

multiplicity:
A notation in a class diagram that shows, for a HAS-A
relationship, how many references there are to instances
of another class.

data encapsulation:
A program development plan that involves a prototype
using global variables and a final version that makes the
global variables into instance attributes.

Exercises

Exercise 18-1.

For the following program, draw a UML class diagram that
shows these classes and the relationships among them.
class PingPongParent:

 pass

class Ping(PingPongParent):

 def __init__(self, pong):

 self.pong = pong

class Pong(PingPongParent):

 def __init__(self, pings=None):

 if pings is None:

 self.pings = []

 else:

 self.pings = pings

 def add_ping(self, ping):

 self.pings.append(ping)

pong = Pong()

ping = Ping(pong)

pong.add_ping(ping)

Exercise 18-2.

Write a Deck method called deal_hands that takes two
parameters: the number of hands and the number of cards
per hand. It should create the appropriate number of Hand
objects, deal the appropriate number of cards per hand,
and return a list of Hands.

Exercise 18-3.

The following are the possible hands in poker, in increasing
order of value and decreasing order of probability:
pair:

Two cards with the same rank.

two pair:
Two pairs of cards with the same rank.

three of a kind:
Three cards with the same rank.

straight:
Five cards with ranks in sequence (aces can be high or
low, so Ace-2-3-4-5 is a straight and so is 10-Jack-Queen-
King-Ace, but Queen-King-Ace-2-3 is not.)

flush:
Five cards with the same suit.

full house:
Three cards with one rank, two cards with another.

four of a kind:
Four cards with the same rank.

straight flush:

Five cards in sequence (as defined above) and with the
same suit.

The goal of these exercises is to estimate the probability of
drawing these various hands.

1. Download the following files from
http://thinkpython2.com/code:

Card.py:
A complete version of the Card, Deck and Hand classes
in this chapter.

PokerHand.py:
An incomplete implementation of a class that
represents a poker hand, and some code that tests
it.

2. If you run PokerHand.py, it deals seven 7-card poker
hands and checks to see if any of them contains a
flush. Read this code carefully before you go on.

3. Add methods to PokerHand.py named has_pair,
has_twopair, etc. that return True or False according to
whether or not the hand meets the relevant criteria.
Your code should work correctly for “hands” that
contain any number of cards (although 5 and 7 are the
most common sizes).

4. Write a method named classify that figures out the
highest-value classification for a hand and sets the
label attribute accordingly. For example, a 7-card hand
might contain a flush and a pair; it should be labeled
“flush”.

5. When you are convinced that your classification
methods are working, the next step is to estimate the
probabilities of the various hands. Write a function in

http://thinkpython2.com/code

PokerHand.py that shuffles a deck of cards, divides it into
hands, classifies the hands, and counts the number of
times various classifications appear.

6. Print a table of the classifications and their
probabilities. Run your program with larger and larger
numbers of hands until the output values converge to a
reasonable degree of accuracy. Compare your results
to the values at
http://en.wikipedia.org/wiki/Hand_rankings.

Solution: http://thinkpython2.com/code/PokerHandSoln.py.

http://en.wikipedia.org/wiki/Hand_rankings
http://thinkpython2.com/code/PokerHandSoln.py

Chapter 19. The Goodies

One of my goals for this book has been to teach you as little
Python as possible. When there were two ways to do
something, I picked one and avoided mentioning the other.
Or sometimes I put the second one into an exercise.
Now I want to go back for some of the good bits that got
left behind. Python provides a number of features that are
not really necessary—you can write good code without
them—but with them you can sometimes write code that’s
more concise, readable or efficient, and sometimes all
three.

Conditional Expressions

We saw conditional statements in “Conditional Execution”.
Conditional statements are often used to choose one of two
values; for example:

if x > 0:

 y = math.log(x)

else:

 y = float('nan')

This statement checks whether x is positive. If so, it
computes math.log. If not, math.log would raise a ValueError.
To avoid stopping the program, we generate a “NaN”,
which is a special floating-point value that represents “Not
a Number”.
We can write this statement more concisely using a
conditional expression:

y = math.log(x) if x > 0 else float('nan')

You can almost read this line like English: “y gets log-x if x
is greater than 0; otherwise it gets NaN”.
Recursive functions can sometimes be rewritten using
conditional expressions. For example, here is a recursive
version of factorial:

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

We can rewrite it like this:

def factorial(n):

 return 1 if n == 0 else n * factorial(n-1)

Another use of conditional expressions is handling optional
arguments. For example, here is the init method from
GoodKangaroo (see Exercise 17-2):

 def __init__(self, name, contents=None):

 self.name = name

 if contents == None:

 contents = []

 self.pouch_contents = contents

We can rewrite this one like this:

 def __init__(self, name, contents=None):

 self.name = name

 self.pouch_contents = [] if contents == None else contents

In general, you can replace a conditional statement with a
conditional expression if both branches contain simple

expressions that are either returned or assigned to the
same variable.

List Comprehensions

In “Map, Filter and Reduce” we saw the map and filter
patterns. For example, this function takes a list of strings,
maps the string method capitalize to the elements, and
returns a new list of strings:

def capitalize_all(t):

 res = []

 for s in t:

 res.append(s.capitalize())

 return res

We can write this more concisely using a list

comprehension:

def capitalize_all(t):

 return [s.capitalize() for s in t]

The bracket operators indicate that we are constructing a
new list. The expression inside the brackets specifies the
elements of the list, and the for clause indicates what
sequence we are traversing.
The syntax of a list comprehension is a little awkward
because the loop variable, s in this example, appears in the
expression before we get to the definition.
List comprehensions can also be used for filtering. For
example, this function selects only the elements of t that
are uppercase, and returns a new list:

def only_upper(t):

 res = []

 for s in t:

 if s.isupper():

 res.append(s)

 return res

We can rewrite it using a list comprehension:

def only_upper(t):

 return [s for s in t if s.isupper()]

List comprehensions are concise and easy to read, at least
for simple expressions. And they are usually faster than the
equivalent for loops, sometimes much faster. So if you are
mad at me for not mentioning them earlier, I understand.
But, in my defense, list comprehensions are harder to
debug because you can’t put a print statement inside the
loop. I suggest that you use them only if the computation is
simple enough that you are likely to get it right the first
time. And for beginners that means never.

Generator Expressions

Generator expressions are similar to list comprehensions,
but with parentheses instead of square brackets:

>>> g = (x**2 for x in range(5))

>>> g

<generator object <genexpr> at 0x7f4c45a786c0>

The result is a generator object that knows how to iterate
through a sequence of values. But unlike a list
comprehension, it does not compute the values all at once;
it waits to be asked. The built-in function next gets the next
value from the generator:

>>> next(g)

0

>>> next(g)

1

When you get to the end of the sequence, next raises a
StopIteration exception. You can also use a for loop to
iterate through the values:

>>> for val in g:

... print(val)

4

9

16

The generator object keeps track of where it is in the
sequence, so the for loop picks up where next left off. Once
the generator is exhausted, it continues to raise
StopException:

>>> next(g)

StopIteration

Generator expressions are often used with functions like
sum, max, and min:

>>> sum(x**2 for x in range(5))

30

any and all

Python provides a built-in function, any, that takes a
sequence of boolean values and returns True if any of the
values are True. It works on lists:

>>> any([False, False, True])

True

But it is often used with generator expressions:

>>> any(letter == 't' for letter in 'monty')

True

That example isn’t very useful because it does the same
thing as the in operator. But we could use any to rewrite
some of the search functions we wrote in “Search”. For
example, we could write avoids like this:

def avoids(word, forbidden):

 return not any(letter in forbidden for letter in word)

The function almost reads like English: “word avoids
forbidden if there are not any forbidden letters in word.”
Using any with a generator expression is efficient because it
stops immediately if it finds a True value, so it doesn’t have
to evaluate the whole sequence.
Python provides another built-in function, all, that returns
True if every element of the sequence is True. As an
exercise, use all to rewrite uses_all from “Search”.

Sets

In “Dictionary Subtraction” I use dictionaries to find the
words that appear in a document but not in a word list. The
function I wrote takes d1, which contains the words from
the document as keys, and d2, which contains the list of
words. It returns a dictionary that contains the keys from d1
that are not in d2:

def subtract(d1, d2):

 res = dict()

 for key in d1:

 if key not in d2:

 res[key] = None

 return res

In all of these dictionaries, the values are None because we
never use them. As a result, we waste some storage space.
Python provides another built-in type, called a set, that
behaves like a collection of dictionary keys with no values.
Adding elements to a set is fast; so is checking
membership. And sets provide methods and operators to
compute common set operations.
For example, set subtraction is available as a method called
difference or as an operator, -. So we can rewrite subtract
like this:

def subtract(d1, d2):

 return set(d1) - set(d2)

The result is a set instead of a dictionary, but for operations
like iteration, the behavior is the same.
Some of the exercises in this book can be done concisely
and efficiently with sets. For example, here is a solution to
has_duplicates, from Exercise 10-7, that uses a dictionary:

def has_duplicates(t):

 d = {}

 for x in t:

 if x in d:

 return True

 d[x] = True

 return False

When an element appears for the first time, it is added to
the dictionary. If the same element appears again, the
function returns True.
Using sets, we can write the same function like this:

def has_duplicates(t):

 return len(set(t)) < len(t)

An element can only appear in a set once, so if an element
in t appears more than once, the set will be smaller than t.
If there are no duplicates, the set will be the same size as t.
We can also use sets to do some of the exercises in
Chapter 9. For example, here’s a version of uses_only with a
loop:

def uses_only(word, available):

 for letter in word:

 if letter not in available:

 return False

 return True

uses_only checks whether all letters in word are in available.
We can rewrite it like this:

def uses_only(word, available):

 return set(word) <= set(available)

The <= operator checks whether one set is a subset or
another, including the possibility that they are equal, which
is true if all the letters in word appear in available.
As an exercise, rewrite avoids using sets.

Counters

A Counter is like a set, except that if an element appears
more than once, the Counter keeps track of how many
times it appears. If you are familiar with the mathematical
idea of a multiset, a Counter is a natural way to represent
a multiset.

Counter is defined in a standard module called collections,
so you have to import it. You can initialize a Counter with a
string, list, or anything else that supports iteration:

>>> from collections import Counter

>>> count = Counter('parrot')

>>> count

Counter({'r': 2, 't': 1, 'o': 1, 'p': 1, 'a': 1})

Counters behave like dictionaries in many ways; they map
from each key to the number of times it appears. As in
dictionaries, the keys have to be hashable.
Unlike dictionaries, Counters don’t raise an exception if
you access an element that doesn’t appear. Instead, they
return 0:

>>> count['d']

0

We can use Counters to rewrite is_anagram from Exercise
10-6:

def is_anagram(word1, word2):

 return Counter(word1) == Counter(word2)

If two words are anagrams, they contain the same letters
with the same counts, so their Counters are equivalent.
Counters provide methods and operators to perform set-
like operations, including addition, subtraction, union and
intersection. And they provide an often-useful method,
most_common, which returns a list of value-frequency pairs,
sorted from most common to least:

>>> count = Counter('parrot')

>>> for val, freq in count.most_common(3):

... print(val, freq)

r 2

p 1

a 1

defaultdict

The collections module also provides defaultdict, which is
like a dictionary except that if you access a key that doesn’t
exist, it can generate a new value on the fly.
When you create a defaultdict, you provide a function that’s
used to create new values. A function used to create
objects is sometimes called a factory. The built-in functions
that create lists, sets, and other types can be used as
factories:

>>> from collections import defaultdict

>>> d = defaultdict(list)

Notice that the argument is list, which is a class object,
not list(), which is a new list. The function you provide
doesn’t get called unless you access a key that doesn’t
exist:

>>> t = d['new key']

>>> t

[]

The new list, which we’re calling t, is also added to the
dictionary. So if we modify t, the change appears in d:

>>> t.append('new value')

>>> d

defaultdict(<class 'list'>, {'new key': ['new value']})

If you are making a dictionary of lists, you can often write
simpler code using defaultdict. In my solution to Exercise

12-2, which you can get from
http://thinkpython2.com/code/anagram_sets.py, I make a
dictionary that maps from a sorted string of letters to the
list of words that can be spelled with those letters. For
example, 'opst' maps to the list ['opts', 'post', 'pots',
'spot', 'stop', 'tops'].
Here’s the original code:

def all_anagrams(filename):

 d = {}

 for line in open(filename):

 word = line.strip().lower()

 t = signature(word)

 if t not in d:

 d[t] = [word]

 else:

 d[t].append(word)

 return d

This can be simplified using setdefault, which you might
have used in Exercise 11-2:

def all_anagrams(filename):

 d = {}

 for line in open(filename):

 word = line.strip().lower()

 t = signature(word)

 d.setdefault(t, []).append(word)

 return d

This solution has the drawback that it makes a new list
every time, regardless of whether it is needed. For lists,
that’s no big deal, but if the factory function is complicated,
it might be.
We can avoid this problem and simplify the code using a
defaultdict:

http://thinkpython2.com/code/anagram_sets.py

def all_anagrams(filename):

 d = defaultdict(list)

 for line in open(filename):

 word = line.strip().lower()

 t = signature(word)

 d[t].append(word)

 return d

My solution to Exercise 18-3, which you can download from
http://thinkpython2.com/code/PokerHandSoln.py, uses
setdefault in the function has_straightflush. This solution
has the drawback of creating a Hand object every time
through the loop, whether it is needed or not. As an
exercise, rewrite it using a defaultdict.

Named Tuples

Many simple objects are basically collections of related
values. For example, the Point object defined in Chapter 15
contains two numbers, x and y. When you define a class like
this, you usually start with an init method and a str method:

class Point:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 def __str__(self):

 return '(%g, %g)' % (self.x, self.y)

This is a lot of code to convey a small amount of
information. Python provides a more concise way to say the
same thing:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

http://thinkpython2.com/code/PokerHandSoln.py

The first argument is the name of the class you want to
create. The second is a list of the attributes Point objects
should have, as strings. The return value from namedtuple is
a class object:

>>> Point

<class '__main__.Point'>

Point automatically provides methods like __init__ and
__str__ so you don’t have to write them.
To create a Point object, you use the Point class as a
function:

>>> p = Point(1, 2)

>>> p

Point(x=1, y=2)

The init method assigns the arguments to attributes using
the names you provided. The str method prints a
representation of the Point object and its attributes.
You can access the elements of the named tuple by name:

>>> p.x, p.y

(1, 2)

But you can also treat a named tuple as a tuple:

>>> p[0], p[1]

(1, 2)

>>> x, y = p

>>> x, y

(1, 2)

Named tuples provide a quick way to define simple classes.
The drawback is that simple classes don’t always stay
simple. You might decide later that you want to add

methods to a named tuple. In that case, you could define a
new class that inherits from the named tuple:

class Pointier(Point):

 # add more methods here

Or you could switch to a conventional class definition.

Gathering Keyword Args

In “Variable-Length Argument Tuples”, we saw how to
write a function that gathers its arguments into a tuple:

def printall(*args):

 print(args)

You can call this function with any number of positional
arguments (that is, arguments that don’t have keywords):

>>> printall(1, 2.0, '3')

(1, 2.0, '3')

But the * operator doesn’t gather keyword arguments:

>>> printall(1, 2.0, third='3')

TypeError: printall() got an unexpected keyword argument 'third'

To gather keyword arguments, you can use the ** operator:

def printall(*args, **kwargs):

 print(args, kwargs)

You can call the keyword gathering parameter anything
you want, but kwargs is a common choice. The result is a
dictionary that maps keywords to values:

>>> printall(1, 2.0, third='3')

(1, 2.0) {'third': '3'}

If you have a dictionary of keywords and values, you can
use the scatter operator, **, to call a function:

>>> d = dict(x=1, y=2)

>>> Point(**d)

Point(x=1, y=2)

Without the scatter operator, the function would treat d as
a single positional argument, so it would assign d to x and
complain because there’s nothing to assign to y:

>>> d = dict(x=1, y=2)

>>> Point(d)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: __new__() missing 1 required positional argument: 'y'

When you are working with functions that have a large
number of parameters, it is often useful to create and pass
around dictionaries that specify frequently used options.

Glossary

conditional expression:
An expression that has one of two values, depending on
a condition.

list comprehension:
An expression with a for loop in square brackets that
yields a new list.

generator expression:

An expression with a for loop in parentheses that yields
a generator object.

multiset:
A mathematical entity that represents a mapping
between the elements of a set and the number of times
they appear.

factory:
A function, usually passed as a parameter, used to
create objects.

Exercises

Exercise 19-1.

The following is a function that computes the binomial
coefficient recursively:
def binomial_coeff(n, k):

 """Compute the binomial coefficient "n choose k".

 n: number of trials

 k: number of successes

 returns: int

 """

 if k == 0:

 return 1

 if n == 0:

 return 0

 res = binomial_coeff(n-1, k) + binomial_coeff(n-1, k-1)

 return res

Rewrite the body of the function using nested conditional
expressions.
One note: this function is not very efficient because it ends
up computing the same values over and over. You could
make it more efficient by memoizing (see “Memos”). But

you will find that it’s harder to memoize if you write it
using conditional expressions.

Chapter 20. Debugging

When you are debugging, you should distinguish among
different kinds of errors in order to track them down more
quickly:

Syntax errors are discovered by the interpreter when it
is translating the source code into byte code. They
indicate that there is something wrong with the structure
of the program. Example: Omitting the colon at the end
of a def statement generates the somewhat redundant
message SyntaxError: invalid syntax.
Runtime errors are produced by the interpreter if
something goes wrong while the program is running.
Most runtime error messages include information about
where the error occurred and what functions were
executing. Example: An infinite recursion eventually
causes the runtime error maximum recursion depth
exceeded.
Semantic errors are problems with a program that runs
without producing error messages but doesn’t do the
right thing. Example: An expression may not be
evaluated in the order you expect, yielding an incorrect
result.

The first step in debugging is to figure out which kind of
error you are dealing with. Although the following sections
are organized by error type, some techniques are
applicable in more than one situation.

Syntax Errors

Syntax errors are usually easy to fix once you figure out
what they are. Unfortunately, the error messages are often
not helpful. The most common messages are SyntaxError:
invalid syntax and SyntaxError: invalid token, neither of
which is very informative.
On the other hand, the message does tell you where in the
program the problem occurred. Actually, it tells you where
Python noticed a problem, which is not necessarily where
the error is. Sometimes the error is prior to the location of
the error message, often on the preceding line.
If you are building the program incrementally, you should
have a good idea about where the error is. It will be in the
last line you added.
If you are copying code from a book, start by comparing
your code to the book’s code very carefully. Check every
character. At the same time, remember that the book might
be wrong, so if you see something that looks like a syntax
error, it might be.
Here are some ways to avoid the most common syntax
errors:

1. Make sure you are not using a Python keyword for a
variable name.

2. Check that you have a colon at the end of the header of
every compound statement, including for, while, if, and
def statements.

3. Make sure that any strings in the code have matching
quotation marks. Make sure that all quotation marks
are straight quotes, not curly quotes.

4. If you have multiline strings with triple quotes (single
or double), make sure you have terminated the string
properly. An unterminated string may cause an invalid

token error at the end of your program, or it may treat
the following part of the program as a string until it
comes to the next string. In the second case, it might
not produce an error message at all!

5. An unclosed opening operator—(, {, or [—makes
Python continue with the next line as part of the
current statement. Generally, an error occurs almost
immediately in the next line.

6. Check for the classic = instead of == inside a
conditional.

7. Check the indentation to make sure it lines up the way
it is supposed to. Python can handle space and tabs,
but if you mix them it can cause problems. The best
way to avoid this problem is to use a text editor that
knows about Python and generates consistent
indentation.

8. If you have non-ASCII characters in the code (including
strings and comments), that might cause a problem,
although Python 3 usually handles non-ASCII
characters. Be careful if you paste in text from a web
page or other source.

If nothing works, move on to the next section...

I keep making changes and it makes no

difference.

If the interpreter says there is an error and you don’t see it,
that might be because you and the interpreter are not
looking at the same code. Check your programming
environment to make sure that the program you are editing
is the one Python is trying to run.

If you are not sure, try putting an obvious and deliberate
syntax error at the beginning of the program. Now run it
again. If the interpreter doesn’t find the new error, you are
not running the new code.
There are a few likely culprits:

You edited the file and forgot to save the changes before
running it again. Some programming environments do
this for you, but some don’t.
You changed the name of the file, but you are still
running the old name.
Something in your development environment is
configured incorrectly.
If you are writing a module and using import, make sure
you don’t give your module the same name as one of the
standard Python modules.
If you are using import to read a module, remember that
you have to restart the interpreter or use reload to read a
modified file. If you import the module again, it doesn’t
do anything.

If you get stuck and you can’t figure out what is going on,
one approach is to start again with a new program like
“Hello, World!”, and make sure you can get a known
program to run. Then gradually add the pieces of the
original program to the new one.

Runtime Errors

Once your program is syntactically correct, Python can
read it and at least start running it. What could possibly go
wrong?

My program does absolutely nothing.

This problem is most common when your file consists of
functions and classes but does not actually invoke a
function to start execution. This may be intentional if you
only plan to import this module to supply classes and
functions.
If it is not intentional, make sure there is a function call in
the program, and make sure the flow of execution reaches
it (see “Flow of execution” below).

My program hangs.

If a program stops and seems to be doing nothing, it is
“hanging”. Often that means that it is caught in an infinite
loop or infinite recursion.

If there is a particular loop that you suspect is the
problem, add a print statement immediately before the
loop that says “entering the loop” and another
immediately after that says “exiting the loop”.
Run the program. If you get the first message and not
the second, you’ve got an infinite loop. Go to the “Infinite
loop” section below.
Most of the time, an infinite recursion will cause the
program to run for a while and then produce a
“RuntimeError: Maximum recursion depth exceeded”
error. If that happens, go to the “Infinite recursion”
section below.
If you are not getting this error but you suspect there is
a problem with a recursive method or function, you can
still use the techniques in the “Infinite recursion”
section.

If neither of those steps works, start testing other loops
and other recursive functions and methods.
If that doesn’t work, then it is possible that you don’t
understand the flow of execution in your program. Go to
the “Flow of execution” section below.

Infinite loop

If you think you have an infinite loop and you think you
know what loop is causing the problem, add a print
statement at the end of the loop that prints the values of
the variables in the condition and the value of the
condition.
For example:

while x > 0 and y < 0 :

 # do something to x

 # do something to y

 print('x: ', x)

 print('y: ', y)

 print("condition: ", (x > 0 and y < 0))

Now when you run the program, you will see three lines of
output for each time through the loop. The last time
through the loop, the condition should be False. If the loop
keeps going, you will be able to see the values of x and y,
and you might figure out why they are not being updated
correctly.

Infinite recursion

Most of the time, infinite recursion causes the program to
run for a while and then produce a Maximum recursion depth
exceeded error.

If you suspect that a function is causing an infinite
recursion, make sure that there is a base case. There
should be some condition that causes the function to return
without making a recursive invocation. If not, you need to
rethink the algorithm and identify a base case.
If there is a base case but the program doesn’t seem to be
reaching it, add a print statement at the beginning of the
function that prints the parameters. Now when you run the
program, you will see a few lines of output every time the
function is invoked, and you will see the parameter values.
If the parameters are not moving toward the base case, you
will get some ideas about why not.

Flow of execution

If you are not sure how the flow of execution is moving
through your program, add print statements to the
beginning of each function with a message like “entering
function foo”, where foo is the name of the function.
Now when you run the program, it will print a trace of each
function as it is invoked.

When I run the program I get an exception.

If something goes wrong during runtime, Python prints a
message that includes the name of the exception, the line
of the program where the problem occurred, and a
traceback.
The traceback identifies the function that is currently
running, and then the function that called it, and then the
function that called that, and so on. In other words, it
traces the sequence of function calls that got you to where
you are, including the line number in your file where each
call occurred.

The first step is to examine the place in the program where
the error occurred and see if you can figure out what
happened. These are some of the most common runtime
errors:
NameError:

You are trying to use a variable that doesn’t exist in the
current environment. Check if the name is spelled right,
or at least consistently. And remember that local
variables are local; you cannot refer to them from
outside the function where they are defined.

TypeError:
There are several possible causes:

You are trying to use a value improperly. Example:
indexing a string, list, or tuple with something other
than an integer.
There is a mismatch between the items in a format
string and the items passed for conversion. This can
happen if either the number of items does not match
or an invalid conversion is called for.
You are passing the wrong number of arguments to a
function. For methods, look at the method definition
and check that the first parameter is self. Then look
at the method invocation; make sure you are invoking
the method on an object with the right type and
providing the other arguments correctly.

KeyError:
You are trying to access an element of a dictionary using
a key that the dictionary does not contain. If the keys
are strings, remember that capitalization matters.

AttributeError:

You are trying to access an attribute or method that
does not exist. Check the spelling! You can use the built-
in function vars to list the attributes that do exist.
If an AttributeError indicates that an object has NoneType,
that means that it is None. So the problem is not the
attribute name, but the object.
The reason the object is none might be that you forgot to
return a value from a function; if you get to the end of a
function without hitting a return statement, it returns
None. Another common cause is using the result from a
list method, like sort, that returns None.

IndexError:
The index you are using to access a list, string, or tuple
is greater than its length minus one. Immediately before
the site of the error, add a print statement to display the
value of the index and the length of the array. Is the
array the right size? Is the index the right value?

The Python debugger (pdb) is useful for tracking down
exceptions because it allows you to examine the state of the
program immediately before the error. You can read about
pdb at https://docs.python.org/3/library/pdb.html.

I added so many print statements I get

inundated with output.

One of the problems with using print statements for
debugging is that you can end up buried in output. There
are two ways to proceed: simplify the output or simplify the
program.
To simplify the output, you can remove or comment out
print statements that aren’t helping, or combine them, or

https://docs.python.org/3/library/pdb.html

format the output so it is easier to understand.
To simplify the program, there are several things you can
do. First, scale down the problem the program is working
on. For example, if you are searching a list, search a small
list. If the program takes input from the user, give it the
simplest input that causes the problem.
Second, clean up the program. Remove dead code and
reorganize the program to make it as easy to read as
possible. For example, if you suspect that the problem is in
a deeply nested part of the program, try rewriting that part
with simpler structure. If you suspect a large function, try
splitting it into smaller functions and testing them
separately.
Often the process of finding the minimal test case leads you
to the bug. If you find that a program works in one
situation but not in another, that gives you a clue about
what is going on.
Similarly, rewriting a piece of code can help you find subtle
bugs. If you make a change that you think shouldn’t affect
the program, and it does, that can tip you off.

Semantic Errors

In some ways, semantic errors are the hardest to debug,
because the interpreter provides no information about what
is wrong. Only you know what the program is supposed to
do.
The first step is to make a connection between the program
text and the behavior you are seeing. You need a
hypothesis about what the program is actually doing. One
of the things that makes that hard is that computers run so
fast.

You will often wish that you could slow the program down
to human speed, and with some debuggers you can. But the
time it takes to insert a few well-placed print statements is
often short compared to setting up the debugger, inserting
and removing breakpoints, and “stepping” the program to
where the error is occurring.

My program doesn’t work.

You should ask yourself these questions:
Is there something the program was supposed to do but
which doesn’t seem to be happening? Find the section of
the code that performs that function and make sure it is
executing when you think it should.
Is something happening that shouldn’t? Find code in
your program that performs that function and see if it is
executing when it shouldn’t.
Is a section of code producing an effect that is not what
you expected? Make sure that you understand the code
in question, especially if it involves functions or methods
in other Python modules. Read the documentation for the
functions you call. Try them out by writing simple test
cases and checking the results.

In order to program, you need a mental model of how
programs work. If you write a program that doesn’t do
what you expect, often the problem is not in the program;
it’s in your mental model.
The best way to correct your mental model is to break the
program into its components (usually the functions and
methods) and test each component independently. Once
you find the discrepancy between your model and reality,
you can solve the problem.

Of course, you should be building and testing components
as you develop the program. If you encounter a problem,
there should be only a small amount of new code that is not
known to be correct.

I’ve got a big hairy expression and it doesn’t do

what I expect.

Writing complex expressions is fine as long as they are
readable, but they can be hard to debug. It is often a good
idea to break a complex expression into a series of
assignments to temporary variables.
For example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor(i)

pickedCard = self.hands[neighbor].popCard()

self.hands[i].addCard(pickedCard)

The explicit version is easier to read because the variable
names provide additional documentation, and it is easier to
debug because you can check the types of the intermediate
variables and display their values.
Another problem that can occur with big expressions is that
the order of evaluation may not be what you expect. For
example, if you are translating the expression into
Python, you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have
the same precedence and are evaluated from left to right.

So this expression computes .
A good way to debug expressions is to add parentheses to
make the order of evaluation explicit:

 y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use
parentheses. Not only will the program be correct (in the
sense of doing what you intended), it will also be more
readable for other people who haven’t memorized the order
of operations.

I’ve got a function that doesn’t return what I

expect.

If you have a return statement with a complex expression,
you don’t have a chance to print the result before
returning. Again, you can use a temporary variable. For
example, instead of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()

return count

Now you have the opportunity to display the value of count
before returning.

I’m really, really stuck and I need help.

First, try getting away from the computer for a few
minutes. Computers emit waves that affect the brain,
causing these symptoms:

Frustration and rage.
Superstitious beliefs (“the computer hates me”) and
magical thinking (“the program only works when I wear
my hat backward”).
Random walk programming (the attempt to program by
writing every possible program and choosing the one
that does the right thing).

If you find yourself suffering from any of these symptoms,
get up and go for a walk. When you are calm, think about
the program. What is it doing? What are some possible
causes of that behavior? When was the last time you had a
working program, and what did you do next?
Sometimes it just takes time to find a bug. I often find bugs
when I am away from the computer and let my mind
wander. Some of the best places to find bugs are on trains,
in the shower, and in bed just before you fall asleep.

No, I really need help.

It happens. Even the best programmers occasionally get
stuck. Sometimes you work on a program so long that you
can’t see the error. You need a fresh pair of eyes.
Before you bring someone else in, make sure you are
prepared. Your program should be as simple as possible,
and you should be working on the smallest input that
causes the error. You should have print statements in the
appropriate places (and the output they produce should be
comprehensible). You should understand the problem well
enough to describe it concisely.
When you bring someone in to help, be sure to give them
the information they need:

If there is an error message, what is it and what part of
the program does it indicate?
What was the last thing you did before this error
occurred? What were the last lines of code that you
wrote, or what is the new test case that fails?
What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what
you could have done to find it faster. Next time you see
something similar, you will be able to find the bug more
quickly.
Remember, the goal is not just to make the program work.
The goal is to learn how to make the program work.

Chapter 21. Analysis of

Algorithms

This appendix is an edited excerpt from Think

Complexity, by Allen B. Downey, also published by

O’Reilly Media (2012). When you are done with this book,

you might want to move on to that one.

Analysis of algorithms is a branch of computer science
that studies the performance of algorithms, especially their
runtime and space requirements. See
http://en.wikipedia.org/wiki/Analysis_of_algorithms.
The practical goal of algorithm analysis is to predict the
performance of different algorithms in order to guide
design decisions.
During the 2008 United States presidential campaign,
candidate Barack Obama was asked to perform an
impromptu analysis when he visited Google. Chief
executive Eric Schmidt jokingly asked him for “the most
efficient way to sort a million 32-bit integers.” Obama had
apparently been tipped off, because he quickly replied, “I
think the bubble sort would be the wrong way to go.” See
http://bit.ly/1MpIwTf.
This is true: bubble sort is conceptually simple but slow for
large datasets. The answer Schmidt was probably looking
for is “radix sort” (http://en.wikipedia.org/wiki/Radix_sort).1

The goal of algorithm analysis is to make meaningful
comparisons between algorithms, but there are some
problems:

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://bit.ly/1MpIwTf
http://en.wikipedia.org/wiki/Radix_sort

The relative performance of the algorithms might depend
on characteristics of the hardware, so one algorithm
might be faster on Machine A, another on Machine B.
The general solution to this problem is to specify a
machine model and analyze the number of steps, or
operations, an algorithm requires under a given model.
Relative performance might depend on the details of the
dataset. For example, some sorting algorithms run faster
if the data are already partially sorted; other algorithms
run slower in this case. A common way to avoid this
problem is to analyze the worst-case scenario. It is
sometimes useful to analyze average-case performance,
but that’s usually harder, and it might not be obvious
what set of cases to average over.
Relative performance also depends on the size of the
problem. A sorting algorithm that is fast for small lists
might be slow for long lists. The usual solution to this
problem is to express runtime (or number of operations)
as a function of problem size, and group functions into
categories depending on how quickly they grow as
problem size increases.

The good thing about this kind of comparison is that it
lends itself to simple classification of algorithms. For
example, if I know that the runtime of Algorithm A tends to
be proportional to the size of the input, n, and Algorithm B
tends to be proportional to n2, then I expect A to be faster
than B, at least for large values of n.
This kind of analysis comes with some caveats, but we’ll get
to that later.

Order of Growth

Suppose you have analyzed two algorithms and expressed
their runtimes in terms of the size of the input: Algorithm A
takes 100n+1 steps to solve a problem with size n;
Algorithm B takes steps.
The following table shows the runtime of these algorithms
for different problem sizes:

Input size Runtime of Algorithm A Runtime of Algorithm B

10 1 001 111
100 10 001 10 101
1 000 100 001 1 001 001

10 000 1 000 001

At n=10, Algorithm A looks pretty bad; it takes almost 10
times longer than Algorithm B. But for n=100 they are
about the same, and for larger values A is much better.
The fundamental reason is that for large values of n, any
function that contains an n2 term will grow faster than a
function whose leading term is n. The leading term is the
term with the highest exponent.
For Algorithm A, the leading term has a large coefficient,
100, which is why B does better than A for small n. But
regardless of the coefficients, there will always be some
value of n where , for any values of a and b.
The same argument applies to the non-leading terms. Even
if the runtime of Algorithm A were n+1000000, it would
still be better than Algorithm B for sufficiently large n.
In general, we expect an algorithm with a smaller leading
term to be a better algorithm for large problems, but for
smaller problems, there may be a crossover point where
another algorithm is better. The location of the crossover

point depends on the details of the algorithms, the inputs,
and the hardware, so it is usually ignored for purposes of
algorithmic analysis. But that doesn’t mean you can forget
about it.
If two algorithms have the same leading order term, it is
hard to say which is better; again, the answer depends on
the details. So for algorithmic analysis, functions with the
same leading term are considered equivalent, even if they
have different coefficients.
An order of growth is a set of functions whose growth
behavior is considered equivalent. For example, 2n, 100n

and n+1 belong to the same order of growth, which is
written O(n) in Big-Oh notation and often called linear

because every function in the set grows linearly with n.

All functions with the leading term n2 belong to ; they
are called quadratic.
The following table shows some of the orders of growth
that appear most commonly in algorithmic analysis, in
increasing order of badness.

Order of growth Name

O(1) constant

logarithmic (for any b)

O(n) linear

linearithmic

quadratic

cubic

exponential (for any c)

For the logarithmic terms, the base of the logarithm
doesn’t matter; changing bases is the equivalent of
multiplying by a constant, which doesn’t change the order
of growth. Similarly, all exponential functions belong to the
same order of growth regardless of the base of the
exponent. Exponential functions grow very quickly, so
exponential algorithms are only useful for small problems.
Exercise 21-1.

Read the Wikipedia page on Big-Oh notation at
http://en.wikipedia.org/wiki/Big_O_notation and answer the
following questions:

1. What is the order of growth of ? What about
? What about ?

2. What is the order of growth of ? Before
you start multiplying, remember that you only need the
leading term.

3. If f is in O(g), for some unspecified function g, what
can we say about af+b?

4. If f1 and f2 are in O(g), what can we say about ?
5. If f1 is in O(g) and f2 is in O(h), what can we say about

?
6. If f1 is in O(g) and f2 is O(h), what can we say about

?

Programmers who care about performance often find this
kind of analysis hard to swallow. They have a point:
sometimes the coefficients and the non-leading terms make
a real difference. Sometimes the details of the hardware,
the programming language, and the characteristics of the

http://en.wikipedia.org/wiki/Big_O_notation

input make a big difference. And for small problems,
asymptotic behavior is irrelevant.
But if you keep those caveats in mind, algorithmic analysis
is a useful tool. At least for large problems, the “better”
algorithms is usually better, and sometimes it is much

better. The difference between two algorithms with the
same order of growth is usually a constant factor, but the
difference between a good algorithm and a bad algorithm is
unbounded!

Analysis of Basic Python Operations

In Python, most arithmetic operations are constant time;
multiplication usually takes longer than addition and
subtraction, and division takes even longer, but these
runtimes don’t depend on the magnitude of the operands.
Very large integers are an exception; in that case the
runtime increases with the number of digits.
Indexing operations—reading or writing elements in a
sequence or dictionary—are also constant time, regardless
of the size of the data structure.
A for loop that traverses a sequence or dictionary is usually
linear, as long as all of the operations in the body of the
loop are constant time. For example, adding up the
elements of a list is linear:

 total = 0

 for x in t:

 total += x

The built-in function sum is also linear because it does the
same thing, but it tends to be faster because it is a more

efficient implementation; in the language of algorithmic
analysis, it has a smaller leading coefficient.

As a rule of thumb, if the body of a loop is in then the
whole loop is in . The exception is if you can show
that the loop exits after a constant number of iterations. If
a loop runs k times regardless of n, then the loop is in

, even for large k.
Multiplying by k doesn’t change the order of growth, but
neither does dividing. So if the body of a loop is in
and it runs n/k times, the loop is in , even for large
k.
Most string and tuple operations are linear, except
indexing and len, which are constant time. The built-in
functions min and max are linear. The runtime of a slice
operation is proportional to the length of the output, but
independent of the size of the input.
String concatenation is linear; the runtime depends on the
sum of the lengths of the operands.
All string methods are linear, but if the lengths of the
strings are bounded by a constant—for example, operations
on single characters—they are considered constant time.
The string method join is linear; the runtime depends on
the total length of the strings.
Most list methods are linear, but there are some
exceptions:

Adding an element to the end of a list is constant time on
average; when it runs out of room it occasionally gets
copied to a bigger location, but the total time for n

operations is O(n), so the average time for each
operation is O(1).
Removing an element from the end of a list is constant
time.

Sorting is .
Most dictionary operations and methods are constant time,
but there are some exceptions:

The runtime of update is proportional to the size of the
dictionary passed as a parameter, not the dictionary
being updated.
keys, values and items are constant time because they
return iterators. But if you loop through the iterators, the
loop will be linear.

The performance of dictionaries is one of the minor
miracles of computer science. We will see how they work in
“Hashtables”.
Exercise 21-2.

Read the Wikipedia page on sorting algorithms at
http://en.wikipedia.org/wiki/Sorting_algorithm and answer
the following questions:

1. What is a “comparison sort?” What is the best worst-
case order of growth for a comparison sort? What is
the best worst-case order of growth for any sort
algorithm?

2. What is the order of growth of bubble sort, and why
does Barack Obama think it is “the wrong way to go?”

3. What is the order of growth of radix sort? What
preconditions do we need to use it?

http://en.wikipedia.org/wiki/Sorting_algorithm

4. What is a stable sort and why might it matter in
practice?

5. What is the worst sorting algorithm (that has a name)?
6. What sort algorithm does the C library use? What sort

algorithm does Python use? Are these algorithms
stable? You might have to Google around to find these
answers.

7. Many of the non-comparison sorts are linear, so why
does does Python use an comparison sort?

Analysis of Search Algorithms

A search is an algorithm that takes a collection and a
target item and determines whether the target is in the
collection, often returning the index of the target.
The simplest search algorithm is a “linear search”, which
traverses the items of the collection in order, stopping if it
finds the target. In the worst case it has to traverse the
entire collection, so the runtime is linear.
The in operator for sequences uses a linear search; so do
string methods like find and count.
If the elements of the sequence are in order, you can use a
bisection search, which is . Bisection search is
similar to the algorithm you might use to look a word up in
a dictionary (a paper dictionary, not the data structure).
Instead of starting at the beginning and checking each item
in order, you start with the item in the middle and check
whether the word you are looking for comes before or
after. If it comes before, then you search the first half of
the sequence. Otherwise you search the second half. Either
way, you cut the number of remaining items in half.

If the sequence has 1,000,000 items, it will take about 20
steps to find the word or conclude that it’s not there. So
that’s about 50,000 times faster than a linear search.
Bisection search can be much faster than linear search, but
it requires the sequence to be in order, which might
require extra work.
There is another data structure called a hashtable that is
even faster—it can do a search in constant time—and it
doesn’t require the items to be sorted. Python dictionaries
are implemented using hashtables, which is why most
dictionary operations, including the in operator, are
constant time.

Hashtables

To explain how hashtables work and why their performance
is so good, I start with a simple implementation of a map
and gradually improve it until it’s a hashtable.
I use Python to demonstrate these implementations, but in
real life you wouldn’t write code like this in Python; you
would just use a dictionary! So for the rest of this chapter,
you have to imagine that dictionaries don’t exist and you
want to implement a data structure that maps from keys to
values. The operations you have to implement are:

add(k, v):
Add a new item that maps from key k to value v. With a
Python dictionary, d, this operation is written d[k] = v.

get(k):
Look up and return the value that corresponds to key k.
With a Python dictionary, d, this operation is written d[k]

or d.get(k).
For now, I assume that each key only appears once. The
simplest implementation of this interface uses a list of
tuples, where each tuple is a key-value pair:

class LinearMap:

 def __init__(self):

 self.items = []

 def add(self, k, v):

 self.items.append((k, v))

 def get(self, k):

 for key, val in self.items:

 if key == k:

 return val

 raise KeyError

add appends a key-value tuple to the list of items, which
takes constant time.
get uses a for loop to search the list: if it finds the target
key it returns the corresponding value; otherwise it raises a
KeyError. So get is linear.
An alternative is to keep the list sorted by key. Then get
could use a bisection search, which is . But
inserting a new item in the middle of a list is linear, so this
might not be the best option. There are other data
structures that can implement add and get in log time, but
that’s still not as good as constant time, so let’s move on.
One way to improve LinearMap is to break the list of key-
value pairs into smaller lists. Here’s an implementation
called BetterMap, which is a list of 100 LinearMaps. As we’ll
see in a second, the order of growth for get is still linear,
but BetterMap is a step on the path toward hashtables:

class BetterMap:

 def __init__(self, n=100):

 self.maps = []

 for i in range(n):

 self.maps.append(LinearMap())

 def find_map(self, k):

 index = hash(k) % len(self.maps)

 return self.maps[index]

 def add(self, k, v):

 m = self.find_map(k)

 m.add(k, v)

 def get(self, k):

 m = self.find_map(k)

 return m.get(k)

__init__ makes a list of n LinearMaps.
find_map is used by add and get to figure out which map to
put the new item in, or which map to search.
find_map uses the built-in function hash, which takes almost
any Python object and returns an integer. A limitation of
this implementation is that it only works with hashable
keys. Mutable types like lists and dictionaries are
unhashable.
Hashable objects that are considered equivalent return the
same hash value, but the converse is not necessarily true:
two objects with different values can return the same hash
value.
find_map uses the modulus operator to wrap the hash values
into the range from 0 to len(self.maps), so the result is a
legal index into the list. Of course, this means that many
different hash values will wrap onto the same index. But if
the hash function spreads things out pretty evenly (which is

what hash functions are designed to do), then we expect
n/100 items per LinearMap.
Since the runtime of LinearMap.get is proportional to the
number of items, we expect BetterMap to be about 100
times faster than LinearMap. The order of growth is still
linear, but the leading coefficient is smaller. That’s nice,
but still not as good as a hashtable.
Here (finally) is the crucial idea that makes hashtables fast:
if you can keep the maximum length of the LinearMaps
bounded, LinearMap.get is constant time. All you have to do
is keep track of the number of items and when the number
of items per LinearMap exceeds a threshold, resize the
hashtable by adding more LinearMaps.
Here is an implementation of a hashtable:

class HashMap:

 def __init__(self):

 self.maps = BetterMap(2)

 self.num = 0

 def get(self, k):

 return self.maps.get(k)

 def add(self, k, v):

 if self.num == len(self.maps.maps):

 self.resize()

 self.maps.add(k, v)

 self.num += 1

 def resize(self):

 new_maps = BetterMap(self.num * 2)

 for m in self.maps.maps:

 for k, v in m.items:

 new_maps.add(k, v)

 self.maps = new_maps

Each HashMap contains a BetterMap; __init__ starts with just 2
LinearMaps and initializes num, which keeps track of the
number of items.
get just dispatches to BetterMap. The real work happens in
add, which checks the number of items and the size of the
BetterMap: if they are equal, the average number of items
per LinearMap is 1, so it calls resize.
resize make a new BetterMap, twice as big as the previous
one, and then “rehashes” the items from the old map to the
new.
Rehashing is necessary because changing the number of
LinearMaps changes the denominator of the modulus
operator in find_map. That means that some objects that
used to hash into the same LinearMap will get split up
(which is what we wanted, right?).
Rehashing is linear, so resize is linear, which might seem
bad, since I promised that add would be constant time. But
remember that we don’t have to resize every time, so add is
usually constant time and only occasionally linear. The total
amount of work to run add n times is proportional to n, so
the average time of each add is constant time!
To see how this works, think about starting with an empty
HashTable and adding a sequence of items. We start with
two LinearMaps, so the first two adds are fast (no resizing
required). Let’s say that they take one unit of work each.
The next add requires a resize, so we have to rehash the
first two items (let’s call that two more units of work) and
then add the third item (one more unit). Adding the next
item costs one unit, so the total so far is six units of work
for four items.

The next add costs five units, but the next three are only one
unit each, so the total is 14 units for the first eight adds.
The next add costs nine units, but then we can add seven
more before the next resize, so the total is 30 units for the
first 16 adds.
After 32 adds, the total cost is 62 units, and I hope you are
starting to see a pattern. After n adds, where n is a power
of two, the total cost is 2n-2 units, so the average work per
add is a little less than 2 units. When n is a power of two,
that’s the best case; for other values of n the average work
is a little higher, but that’s not important. The important
thing is that it is O(1).
Figure 21-1 shows how this works graphically. Each block
represents a unit of work. The columns show the total work
for each add in order from left to right: the first two adds
cost one unit, the third costs three units, etc.

Figure 21-1. The cost of a hashtable add.

The extra work of rehashing appears as a sequence of
increasingly tall towers with increasing space between
them. Now if you knock over the towers, spreading the cost
of resizing over all adds, you can see graphically that the
total cost after n adds is .
An important feature of this algorithm is that when we
resize the HashTable it grows geometrically; that is, we

multiply the size by a constant. If you increase the size
arithmetically—adding a fixed number each time—the
average time per add is linear.
You can download my implementation of HashMap from
http://thinkpython2.com/code/Map.py, but remember that
there is no reason to use it; if you want a map, just use a
Python dictionary.

Glossary

analysis of algorithms:
A way to compare algorithms in terms of their runtime
and/or space requirements.

machine model:
A simplified representation of a computer used to
describe algorithms.

worst case:
The input that makes a given algorithm run slowest (or
require the most space).

leading term:
In a polynomial, the term with the highest exponent.

crossover point:
The problem size where two algorithms require the
same runtime or space.

order of growth:
A set of functions that all grow in a way considered
equivalent for purposes of analysis of algorithms. For

http://thinkpython2.com/code/Map.py

example, all functions that grow linearly belong to the
same order of growth.

Big-Oh notation:
Notation for representing an order of growth; for
example, O(n) represents the set of functions that grow
linearly.

linear:
An algorithm whose runtime is proportional to problem
size, at least for large problem sizes.

quadratic:
An algorithm whose runtime is proportional to n2, where
n is a measure of problem size.

search:
The problem of locating an element of a collection (like a
list or dictionary) or determining that it is not present.

hashtable:
A data structure that represents a collection of key-value
pairs and performs search in constant time.

1 But if you get a question like this in an interview, I think a
better answer is, “The fastest way to sort a million integers
is to use whatever sort function is provided by the language
I’m using. Its performance is good enough for the vast
majority of applications, but if it turned out that my
application was too slow, I would use a profiler to see
where the time was being spent. If it looked like a faster
sort algorithm would have a significant effect on
performance, then I would look around for a good
implementation of radix sort.”

Index

A

abecedarian, Traversal with a for Loop, Exercises

abs function, Return Values

absolute path, Filenames and Paths, Glossary

access, Lists Are Mutable

accumulator, Glossary

histogram, Word Histogram

list, Map, Filter and Reduce

string, Printing the Deck

sum, Map, Filter and Reduce

Ackermann function, Exercises, Exercises

add method, Operator Overloading

addition with carrying, Algorithms

algorithm, Algorithms, Glossary, Random Words,

Analysis of Algorithms

MD5, Exercises

square root, Exercises

aliasing, Objects and Values, Aliasing, Glossary,

Attributes, Copying, Exercises

copying to avoid, Debugging

all, any and all

alphabet, Exercises

alternative execution, Alternative Execution

ambiguity, Formal and Natural Languages

anagram, Exercises

anagram set, Exercises, Exercises

analysis of algorithms, Analysis of Algorithms,

Glossary

analysis of primitives, Analysis of Basic Python

Operations

and operator, Logical Operators

any, any and all

append method, List Methods, List Arguments,

Exercises, Decks, Add, Remove, Shuffle and Sort

arc function, Exercises

Archimedian spiral, Exercises

argument, Function Calls, Adding New Functions,

Parameters and Arguments, Parameters and

Arguments, Glossary, List Arguments

gather, Variable-Length Argument Tuples

keyword, Generalization, Glossary, Gathering

Keyword Args

list, List Arguments

optional, String Methods, Glossary, Exercises,

Lists and Strings, Reverse Lookup, Conditional

Expressions

positional, Another Example, Glossary, Gathering

Keyword Args

variable-length tuple, Variable-Length Argument

Tuples

argument scatter, Variable-Length Argument

Tuples

arithmetic operator, Arithmetic Operators

assert statement, Debugging, Glossary

assignment, Glossary, Reassignment, A List Is a

Sequence

augmented, Map, Filter and Reduce, Glossary

item, Strings Are Immutable, Lists Are Mutable,

Tuples Are Immutable

tuple, Tuple Assignment, Tuples as Return Values,

Lists and Tuples, Glossary

assignment statement, Assignment Statements

attribute, Debugging, Interface and

Implementation

class, Class Attributes, Glossary

initializing, Debugging

instance, Attributes, Glossary, Class Attributes,

Glossary

__dict__, Debugging

AttributeError, Debugging, When I run the

program I get an exception.

augmented assignment, Map, Filter and Reduce,

Glossary

Austen, Jane, Word Histogram

average case, Analysis of Algorithms

average cost, Hashtables

B

badness, Order of Growth

base case, Stack Diagrams for Recursive Functions,

Glossary

benchmarking, Data Structures, Glossary

BetterMap, Hashtables

big, hairy expression, I’ve got a big hairy expression

and it doesn’t do what I expect.

Big-Oh notation, Order of Growth, Glossary

binary search, Exercises

bingo, Exercises

birthday, Exercises

birthday paradox, Exercises

bisect module, Exercises

bisection search, Exercises, Analysis of Search

Algorithms

bisection, debugging by, Debugging

bitwise operator, Arithmetic Operators

body, Adding New Functions, Glossary, The while

Statement

bool type, Boolean Expressions

boolean expression, Boolean Expressions, Glossary

boolean function, Boolean Functions

boolean operator, The in Operator

borrowing, subtraction with, Algorithms,

Prototyping versus Planning

bounded, Hashtables

bracket operator, A String Is a Sequence, Lists Are

Mutable, Tuples Are Immutable

bracket, squiggly, A Dictionary Is a Mapping

branch, Alternative Execution, Glossary

break statement, break

bubble sort, Analysis of Algorithms

bug, Debugging, Glossary, Debugging

worst, Exercises

built-in function, any, any and all, any and all

bytes object, Databases, Glossary

C

calculator, Exercises, Exercises

call graph, Memos, Glossary

Car Talk, Exercises, Exercises, Exercises, Exercises,

Exercises

Card class, Card Objects

card, playing, Inheritance

carrying, addition with, Algorithms, Pure

Functions, Prototyping versus Planning

catch, Glossary

chained conditional, Chained Conditionals,

Glossary

character, A String Is a Sequence

checksum, Pipes, Exercises

child class, Inheritance, Glossary

choice function, Random Numbers

circle function, Exercises

circular definition, More Recursion

class, Values and Types, Programmer-Defined

Types, Glossary

Card, Card Objects

child, Inheritance, Glossary

Deck, Decks

Hand, Inheritance

Kangaroo, Exercises

parent, Inheritance

Point, Programmer-Defined Types, The init

Method

Rectangle, Rectangles

Time, Time

class attribute, Class Attributes, Glossary

class definition, Programmer-Defined Types

class diagram, Class Diagrams, Glossary

class object, Programmer-Defined Types, Glossary,

Named Tuples

close method, Reading and Writing, Databases,

Pipes

__cmp__ method, Comparing Cards

Collatz conjecture, The while Statement

collections, Counters, defaultdict, Named Tuples

colon, Adding New Functions, Syntax Errors

comment, Comments, Glossary

commutativity, String Operations, Type-Based

Dispatch

compare function, Return Values

comparing algorithms, Analysis of Algorithms

comparison

string, String Comparison

tuple, Tuples Are Immutable, Comparing Cards

comparison sort, Analysis of Basic Python

Operations

composition, Composition, Parameters and

Arguments, Glossary, Composition, Decks

compound statement, Conditional Execution,

Glossary

concatenation, String Operations, Glossary,

Variables and Parameters Are Local, Traversal with

a for Loop, Strings Are Immutable, Lists and

Strings

list, List Operations, List Arguments, Exercises

condition, Conditional Execution, Glossary, The

while Statement, Infinite loop

conditional, Syntax Errors

chained, Chained Conditionals, Glossary

nested, Nested Conditionals, Glossary

conditional execution, Conditional Execution

conditional expression, Conditional Expressions,

Glossary

conditional statement, Conditional Execution,

Glossary, Boolean Functions, Conditional

Expressions

consistency check, Debugging, Prototyping versus

Planning

constant time, Hashtables

contributors, Contributor List

conversion, type, Function Calls

copy

deep, Copying

shallow, Copying

slice, String Slices, List Slices

to avoid aliasing, Debugging

copy module, Copying

copying objects, Copying

count method, Exercises

counter, Looping and Counting, Glossary,

Dictionary as a Collection of Counters, Global

Variables

Counter, Counters

counting and looping, Looping and Counting

Creative Commons, Acknowledgments

crossover point, Order of Growth, Glossary

crosswords, Reading Word Lists

cumulative sum, Exercises

D

data encapsulation, Data Encapsulation, Glossary

data structure, Debugging, Glossary, Data

Structures

database, Databases, Glossary

database object, Databases

datetime module, Exercises

dbm module, Databases

dead code, Return Values, Glossary, I added so

many print statements I get inundated with output.

debugger (pdb), When I run the program I get an

exception.

debugging, Debugging, Debugging, Glossary,

Debugging, Debugging, Debugging, Debugging,

Debugging, Debugging, Debugging, Debugging,

Debugging, Debugging, Debugging, Debugging,

Debugging, Debugging, Debugging, List

Comprehensions, Debugging

by bisection, Debugging

emotional response, Debugging, I’m really, really

stuck and I need help.

experimental, Debugging

rubber duck, Glossary

superstition, I’m really, really stuck and I need

help.

deck, Inheritance

Deck class, Decks

deck, playing cards, Decks

declaration, Global Variables, Glossary

decrement, Updating Variables, Glossary

deep copy, Copying, Glossary

deepcopy function, Copying

def keyword, Adding New Functions

default value, Optional Parameters, Glossary, The

init Method

avoiding mutable, Exercises

defaultdict, defaultdict

definition

circular, More Recursion

class, Programmer-Defined Types

function, Adding New Functions

recursive, Exercises

del operator, Deleting Elements

deletion, element of list, Deleting Elements

delimiter, Lists and Strings, Glossary

designed development, Glossary

deterministic, Random Numbers, Glossary

development plan, Glossary

data encapsulation, Data Encapsulation, Glossary

designed, Prototyping versus Planning

encapsulation and generalization, A Development

Plan

incremental, Incremental Development, Syntax

Errors

prototype and patch, Pure Functions, Prototyping

versus Planning

random walk programming, Debugging, I’m

really, really stuck and I need help.

reduction, Search, Looping with Indices, Glossary

diagram

call graph, Glossary

class, Class Diagrams, Glossary

object, Attributes, Rectangles, Copying, Glossary,

Time, Class Attributes

stack, Stack Diagrams, List Arguments

state, Assignment Statements, Reassignment,

Debugging, Lists Are Mutable, Objects and

Values, Aliasing, Dictionaries and Lists,

Dictionaries and Tuples, Attributes, Rectangles,

Copying, Time, Class Attributes

__dict__ attribute, Debugging

dict function, A Dictionary Is a Mapping

dictionary, A Dictionary Is a Mapping, A Dictionary

Is a Mapping, Glossary, Dictionaries and Tuples,

When I run the program I get an exception.

initialize, Dictionaries and Tuples

invert, Dictionaries and Lists

lookup, Reverse Lookup

looping with, Looping and Dictionaries

reverse lookup, Reverse Lookup

subtraction, Dictionary Subtraction

traversal, Dictionaries and Tuples, Debugging

dictionary methods, Analysis of Basic Python

Operations

dbm module, Databases

dictionary subtraction, Sets

diff, Exercises

Dijkstra, Edsger, Debugging

dir function, When I run the program I get an

exception.

directory, Filenames and Paths, Glossary

walk, Filenames and Paths

working, Filenames and Paths

dispatch, type-based, Type-Based Dispatch,

Polymorphism

divisibility, Floor Division and Modulus

division

floating-point, Floor Division and Modulus

floor, Floor Division and Modulus, Debugging,

Glossary

divmod, Tuples as Return Values, Prototyping

versus Planning

docstring, docstring, Glossary, Programmer-

Defined Types

dot notation, Math Functions, Glossary, String

Methods, Attributes, Printing Objects, Class

Attributes

Double Day, Exercises

double letters, Exercises

Doyle, Arthur Conan, Debugging

duplicate, Exercises, Exercises, Exercises, Sets

E

element, A List Is a Sequence, Glossary

element deletion, Deleting Elements

elif keyword, Chained Conditionals

Elkner, Jeff, The Strange History of This Book,

Acknowledgments

ellipses, Adding New Functions

else keyword, Alternative Execution

email address, Tuple Assignment

embedded object, Rectangles, Glossary, Exercises

copying, Copying

emotional debugging, Debugging, I’m really, really

stuck and I need help.

empty list, A List Is a Sequence

empty string, Glossary, Lists and Strings

encapsulation, Encapsulation, Glossary,

Composition, Exercises, Looping and Counting,

Inheritance

encode, Card Objects, Glossary

encrypt, Card Objects

end of line character, Debugging

enumerate function, Lists and Tuples

enumerate object, Lists and Tuples

epsilon, Square Roots

equality and assignment, Reassignment

equivalence, Objects and Values, Copying

equivalent, Glossary

error

runtime, Debugging, Infinite Recursion,

Debugging, Debugging

semantic, Debugging, Debugging, Semantic

Errors

shape, Debugging

syntax, Debugging, Debugging

error checking, Checking Types

error message, Exercises, Debugging, Debugging,

Syntax Errors

eval function, Exercises

evaluate, Expressions and Statements

exception, Debugging, Glossary, Debugging, When I

run the program I get an exception.

AttributeError, Debugging, When I run the

program I get an exception.

IndexError, len, Debugging, Lists Are Mutable,

When I run the program I get an exception.

IOError, Catching Exceptions

KeyError, A Dictionary Is a Mapping, When I run

the program I get an exception.

LookupError, Reverse Lookup

NameError, Variables and Parameters Are Local,

When I run the program I get an exception.

OverflowError, Debugging

RuntimeError, Infinite Recursion

StopIteration, Generator Expressions

SyntaxError, Composition

TypeError, A String Is a Sequence, Strings Are

Immutable, Dictionaries and Lists, Tuples Are

Immutable, Variable-Length Argument Tuples,

Format Operator, Another Example, When I run

the program I get an exception.

UnboundLocalError, Global Variables

ValueError, Keyboard Input, Tuple Assignment

exception, catching, Catching Exceptions

execute, Expressions and Statements, Glossary

exists function, Filenames and Paths

experimental debugging, Debugging, Debugging

exponent, Order of Growth

exponential growth, Order of Growth

expression, Expressions and Statements, Glossary

big and hairy, I’ve got a big hairy expression and

it doesn’t do what I expect.

boolean, Boolean Expressions, Glossary

conditional, Conditional Expressions, Glossary

generator, Generator Expressions, any and all,

Glossary

extend method, List Methods

F

factorial, Conditional Expressions

factorial function, More Recursion, Checking Types

factory, Glossary

factory function, defaultdict, defaultdict

False special value, Boolean Expressions

Fermat’s Last Theorem, Exercises

fibonacci function, One More Example, Memos

file, Persistence

permission, Catching Exceptions

reading and writing, Reading and Writing

file object, Reading Word Lists, Glossary

filename, Filenames and Paths

filter pattern, Map, Filter and Reduce, Glossary,

List Comprehensions

find function, Searching

flag, Global Variables, Glossary

float function, Function Calls

float type, Values and Types

floating-point, Values and Types, Glossary, Square

Roots, Conditional Expressions

floating-point division, Floor Division and Modulus

floor division, Floor Division and Modulus,

Debugging, Glossary

flow of execution, Flow of Execution, Glossary, One

More Example, Debugging, The while Statement,

Debugging, Flow of execution

flower, Exercises

folder, Filenames and Paths

for loop, Simple Repetition, Recursion, Traversal

with a for Loop, Traversing a List, Lists and Tuples,

List Comprehensions

formal language, Formal and Natural Languages,

Glossary

format operator, Format Operator, Glossary, When I

run the program I get an exception.

format sequence, Format Operator, Glossary

format string, Format Operator, Glossary

frame, Stack Diagrams, Glossary, Stack Diagrams

for Recursive Functions, More Recursion, Memos

Free Documentation License, GNU, The Strange

History of This Book, Acknowledgments

frequency, Dictionary as a Collection of Counters

letter, Exercises

word, Word Frequency Analysis, Exercises

fruitful function, Fruitful Functions and Void

Functions, Glossary

frustration, I’m really, really stuck and I need help.

function, The First Program, Functions, Adding

New Functions, Glossary, Object-Oriented Features

abs, Return Values

ack, Exercises, Exercises

arc, Exercises

choice, Random Numbers

circle, Exercises

compare, Return Values

deepcopy, Copying

dict, A Dictionary Is a Mapping

dir, When I run the program I get an exception.

enumerate, Lists and Tuples

eval, Exercises

exists, Filenames and Paths

factorial, More Recursion, Conditional

Expressions

fibonacci, One More Example, Memos

find, Searching

float, Function Calls

fruitful, Fruitful Functions and Void Functions

getattr, Debugging

getcwd, Filenames and Paths

hasattr, Debugging, Debugging

input, Keyboard Input

int, Function Calls

isinstance, Checking Types, Debugging, Type-

Based Dispatch

len, Exercises, len, A Dictionary Is a Mapping

list, Lists and Strings

log, Math Functions

math, Math Functions

max, Tuples as Return Values, Variable-Length

Argument Tuples

min, Tuples as Return Values, Variable-Length

Argument Tuples

open, Reading Word Lists, Reading Word Lists,

Reading and Writing, Catching Exceptions,

Databases

polygon, Exercises

popen, Pipes

programmer defined, Parameters and Arguments,

Optional Parameters

randint, Exercises, Random Numbers

random, Random Numbers

recursive, Recursion

reload, Writing Modules, I keep making changes

and it makes no difference.

repr, Debugging

reversed, Sequences of Sequences

shuffle, Add, Remove, Shuffle and Sort

sorted, Looping and Dictionaries, Sequences of

Sequences

sqrt, Math Functions, Incremental Development

str, Function Calls

sum, Variable-Length Argument Tuples,

Generator Expressions

trigonometric, Math Functions

tuple, Tuples Are Immutable

type, Debugging

void, Fruitful Functions and Void Functions

zip, Lists and Tuples

function argument, Parameters and Arguments

function call, Function Calls, Glossary

function composition, Composition

function definition, Adding New Functions,

Definitions and Uses, Glossary, Glossary

function frame, Stack Diagrams, Glossary, Stack

Diagrams for Recursive Functions, More Recursion,

Memos

function object, Exercises

function parameter, Parameters and Arguments

function syntax, Printing Objects

function type, Adding New Functions

modifier, Modifiers

pure, Pure Functions

function, reasons for, Why Functions?

function, tuple as return value, Tuples as Return

Values

functional programming style, Modifiers, Glossary

G

gamma function, Checking Types

gather, Variable-Length Argument Tuples, Glossary,

Gathering Keyword Args

GCD (greatest common divisor), Exercises

generalization, Generalization, Glossary, Search,

Prototyping versus Planning

generator expression, Generator Expressions, any

and all, Glossary

generator object, Generator Expressions

geometric resizing, Hashtables

get method, Dictionary as a Collection of Counters

getattr function, Debugging

getcwd function, Filenames and Paths

global statement, Global Variables, Glossary

global variable, Global Variables, Glossary

update, Global Variables

GNU Free Documentation License, The Strange

History of This Book, Acknowledgments

greatest common divisor (GCD), Exercises

grid, Exercises

guardian pattern, Checking Types, Glossary,

Debugging

H

Hand class, Inheritance

hanging, My program hangs.

HAS-A relationship, Class Diagrams, Glossary,

Glossary

hasattr function, Debugging, Debugging

hash function, Dictionaries and Lists, Glossary,

Hashtables

hashable, Dictionaries and Lists, Glossary,

Dictionaries and Tuples

HashMap, Hashtables

hashtable, Glossary, Hashtables, Glossary

header, Adding New Functions, Glossary, Syntax

Errors

Hello, World, The First Program

hexadecimal, Programmer-Defined Types

high-level language, Glossary

histogram, Dictionary as a Collection of Counters,

Dictionary as a Collection of Counters

random choice, Random Numbers, Random

Words

word frequencies, Word Histogram

Holmes, Sherlock, Debugging

homophone, Exercises

hypotenuse, Incremental Development

I

identical, Glossary

identity, Objects and Values, Copying

if statement, Conditional Execution

immutability, Strings Are Immutable, Strings Are

Immutable, Glossary, Aliasing, Dictionaries and

Lists, Tuples Are Immutable, Sequences of

Sequences

implementation, Dictionary as a Collection of

Counters, Glossary, Data Structures, Interface and

Implementation

import statement, Glossary, Writing Modules

in operator, Analysis of Search Algorithms

in operator, The in Operator, Search, Lists Are

Mutable, A Dictionary Is a Mapping

increment, Updating Variables, Glossary, Modifiers,

Another Example

incremental development, Glossary, Syntax Errors

indentation, Adding New Functions, Printing

Objects, Syntax Errors

index, A String Is a Sequence, A String Is a

Sequence, Debugging, Glossary, Lists Are Mutable,

A Dictionary Is a Mapping, When I run the program

I get an exception.

looping with, Looping with Indices, Traversing a

List

negative, len

slice, String Slices, List Slices

starting at zero, A String Is a Sequence, Lists Are

Mutable

IndexError, len, Debugging, Lists Are Mutable,

When I run the program I get an exception.

indexing, Analysis of Basic Python Operations

infinite loop, The while Statement, Glossary, My

program hangs., Infinite loop

infinite recursion, Infinite Recursion, Glossary,

Checking Types, My program hangs., Infinite

recursion

information hiding, Glossary

inheritance, Inheritance, Debugging, Glossary,

Named Tuples

init method, The init Method, Debugging, Card

Objects, Decks, Inheritance

initialization (before update), Updating Variables

initialization, variable, Glossary

input function, Keyboard Input

instance, Programmer-Defined Types, Glossary

as argument, Attributes

as return value, Instances as Return Values

instance attribute, Attributes, Glossary, Class

Attributes, Glossary

instantiate, Glossary

instantiation, Programmer-Defined Types

int function, Function Calls

int type, Values and Types

integer, Values and Types, Glossary

interactive mode, Script Mode, Script Mode,

Glossary, Fruitful Functions and Void Functions

interface, Interface Design, Debugging, Glossary,

Interface and Implementation, Debugging

interlocking words, Exercises

interpret, Glossary

interpreter, Running Python

invariant, Debugging, Glossary

invert dictionary, Dictionaries and Lists

invocation, String Methods, Glossary

IOError, Catching Exceptions

is operator, Objects and Values, Copying

IS-A relationship, Class Diagrams, Glossary

isinstance function, Checking Types, Debugging,

Type-Based Dispatch

item, Strings Are Immutable, Glossary, A List Is a

Sequence, A Dictionary Is a Mapping

dictionary, Glossary

item assignment, Strings Are Immutable, Lists Are

Mutable, Tuples Are Immutable

item update, Traversing a List

items method, Dictionaries and Tuples

iteration, The while Statement, Glossary

iterator, Lists and Tuples, Lists and Tuples,

Dictionaries and Tuples, Sequences of Sequences,

Glossary, Analysis of Basic Python Operations

J

join, Analysis of Basic Python Operations

join method, Lists and Strings, Printing the Deck

K

Kangaroo class, Exercises

key, A Dictionary Is a Mapping, Glossary

key-value pair, A Dictionary Is a Mapping, Glossary,

Dictionaries and Tuples

keyboard input, Keyboard Input

KeyError, A Dictionary Is a Mapping, When I run

the program I get an exception., Hashtables

keyword, Variable Names, Glossary, Syntax Errors

def, Adding New Functions

elif, Chained Conditionals

else, Alternative Execution

keyword argument, Generalization, Glossary,

Gathering Keyword Args

Koch curve, Exercises

L

language

formal, Formal and Natural Languages

natural, Formal and Natural Languages

safe, Debugging

Turing complete, More Recursion

leading coefficient, Order of Growth

leading term, Order of Growth, Glossary

leap of faith, Leap of Faith

len function, Exercises, len, A Dictionary Is a

Mapping

letter frequency, Exercises

letter rotation, Exercises, Exercises

linear, Glossary

linear growth, Order of Growth

linear search, Analysis of Search Algorithms

LinearMap, Hashtables

Linux, Debugging

lipogram, Exercises

Liskov substitution principle, Debugging

list, A List Is a Sequence, Lists and Strings,

Glossary, Sequences of Sequences, List

Comprehensions

as argument, List Arguments

concatenation, List Operations, List Arguments,

Exercises

copy, List Slices

element, Lists Are Mutable

empty, A List Is a Sequence

function, Lists and Strings

index, Lists Are Mutable

membership, Lists Are Mutable

method, List Methods

nested, A List Is a Sequence, Traversing a List

of objects, Decks

of tuples, Lists and Tuples

operation, List Operations

repetition, List Operations

slice, List Slices

traversal, Traversing a List

list comprehension, List Comprehensions, Glossary

list methods, Analysis of Basic Python Operations

literalness, Formal and Natural Languages

local variable, Variables and Parameters Are Local,

Glossary

log function, Math Functions

logarithm, Exercises

logarithmic growth, Order of Growth

logical operator, Boolean Expressions, Logical

Operators

lookup, Glossary

lookup, dictionary, Reverse Lookup

LookupError, Reverse Lookup

loop, Simple Repetition, Glossary, The while

Statement, Lists and Tuples

condition, Infinite loop

for, Simple Repetition, Recursion, Traversal with

a for Loop, Traversing a List

infinite, The while Statement, Infinite loop

nested, Decks

traversal, Traversal with a for Loop

while, The while Statement

loop variable, List Comprehensions

looping

with dictionaries, Looping and Dictionaries

with indices, Looping with Indices, Traversing a

List

with strings, Looping and Counting

looping and counting, Looping and Counting

low-level language, Glossary

ls (Unix command), Pipes

M

machine model, Analysis of Algorithms, Glossary

maintainable, Interface and Implementation

map pattern, Map, Filter and Reduce, Glossary

map to, Card Objects

mapping, Glossary, Markov Analysis

Markov analysis, Markov Analysis

mash-up, Markov Analysis

math function, Math Functions

matplotlib, Exercises

max function, Tuples as Return Values, Variable-

Length Argument Tuples

McCloskey, Robert, Traversal with a for Loop

md5, Pipes

MD5 algorithm, Exercises

md5sum, Exercises

membership

binary search, Exercises

bisection search, Exercises

dictionary, A Dictionary Is a Mapping

list, Lists Are Mutable

set, Exercises

memo, Memos, Glossary

mental model, My program doesn’t work.

metaphor, method invocation, Printing Objects

metathesis, Exercises

method, Glossary, String Methods, Object-Oriented

Features, Glossary

add, Operator Overloading

append, List Methods, List Arguments, Decks,

Add, Remove, Shuffle and Sort

close, Reading and Writing, Databases, Pipes

count, Exercises

extend, List Methods

get, Dictionary as a Collection of Counters

init, The init Method, Card Objects, Decks,

Inheritance

items, Dictionaries and Tuples

join, Lists and Strings, Printing the Deck

mro, Debugging

pop, Deleting Elements, Add, Remove, Shuffle and

Sort

radd, Type-Based Dispatch

read, Pipes

readline, Reading Word Lists, Pipes

remove, Deleting Elements

replace, Word Frequency Analysis

setdefault, Exercises

sort, List Methods, Debugging, Add, Remove,

Shuffle and Sort

split, Lists and Strings, Tuple Assignment

string, Exercises

strip, Reading Word Lists, Word Frequency

Analysis

translate, Word Frequency Analysis

update, Dictionaries and Tuples

values, A Dictionary Is a Mapping

void, List Methods

__cmp__, Comparing Cards

__str__, The __str__ Method, Printing the Deck

method append, Exercises

method resolution order, Debugging

method syntax, Printing Objects

method, list, List Methods

Meyers, Chris, Acknowledgments

min function, Tuples as Return Values, Variable-

Length Argument Tuples

Moby Project, Reading Word Lists

model, mental, My program doesn’t work.

modifier, Modifiers, Glossary

module, Math Functions, Glossary, Glossary

bisect, Exercises

collections, Counters, defaultdict, Named Tuples

copy, Copying

datetime, Exercises

dbm, Databases

os, Filenames and Paths

pickle, Persistence, Pickling

pprint, Debugging

profile, Data Structures

random, Exercises, Random Numbers, Add,

Remove, Shuffle and Sort

reload, Writing Modules, I keep making changes

and it makes no difference.

shelve, Pickling

string, Word Frequency Analysis

structshape, Debugging

time, Exercises

module object, Math Functions, Writing Modules

module, writing, Writing Modules

modulus operator, Floor Division and Modulus,

Glossary

Monty Python and the Holy Grail, Pure Functions

MP3, Exercises

mro method, Debugging

multiline string, docstring, Syntax Errors

multiplicity (in class diagram), Class Diagrams,

Glossary

multiset, Counters

mutability, Strings Are Immutable, Lists Are

Mutable, List Slices, Aliasing, Global Variables,

Tuples Are Immutable, Sequences of Sequences,

Objects Are Mutable

mutable object, as default value, Exercises

N

namedtuple, Named Tuples

NameError, Variables and Parameters Are Local,

When I run the program I get an exception.

NaN, Conditional Expressions

natural language, Formal and Natural Languages,

Glossary

negative index, len

nested conditional, Nested Conditionals, Glossary

nested list, A List Is a Sequence, Traversing a List,

Glossary

newline, Keyboard Input, Printing the Deck

Newton’s method, Square Roots

None special value, Fruitful Functions and Void

Functions, Glossary, Return Values, List Methods,

Deleting Elements

NoneType type, Fruitful Functions and Void

Functions

not operator, Logical Operators

number, random, Random Numbers

O

Obama, Barack, Analysis of Algorithms

object, Strings Are Immutable, Glossary, Objects

and Values, Objects and Values, Glossary

bytes, Databases, Glossary

class, Programmer-Defined Types, Programmer-

Defined Types, Glossary, Named Tuples

copying, Copying

Counter, Counters

database, Databases

defaultdict, defaultdict

embedded, Rectangles, Glossary, Exercises

enumerate, Lists and Tuples

file, Reading Word Lists, Glossary

function, Exercises

generator, Generator Expressions

module, Writing Modules

mutable, Objects Are Mutable

namedtuple, Named Tuples

pipe, Glossary

printing, Printing Objects

set, Sets

zip, Glossary

object diagram, Attributes, Rectangles, Copying,

Glossary, Time, Class Attributes

object-oriented design, Interface and

Implementation

object-oriented language, Glossary

object-oriented programming, Classes and Objects,

Object-Oriented Features, Glossary, Inheritance

odometer, Exercises

Olin College, The Strange History of This Book

open function, Reading Word Lists, Reading Word

Lists, Reading and Writing, Catching Exceptions,

Databases

operand, Glossary

operator, Glossary

and, Logical Operators

arithmetic, Arithmetic Operators

bitwise, Arithmetic Operators

boolean, The in Operator

bracket, A String Is a Sequence, Lists Are

Mutable, Tuples Are Immutable

del, Deleting Elements

format, Format Operator, Glossary, When I run

the program I get an exception.

in, The in Operator, Search, Lists Are Mutable, A

Dictionary Is a Mapping

is, Objects and Values, Copying

logical, Boolean Expressions, Logical Operators

modulus, Floor Division and Modulus, Glossary

not, Logical Operators

or, Logical Operators

overloading, Glossary

relational, Boolean Expressions, Comparing Cards

slice, String Slices, Exercises, List Slices, List

Arguments, Tuples Are Immutable

string, String Operations

update, Map, Filter and Reduce

operator overloading, Operator Overloading,

Comparing Cards

optional argument, String Methods, Glossary,

Exercises, Lists and Strings, Reverse Lookup,

Conditional Expressions

optional parameter, Optional Parameters, The init

Method

or operator, Logical Operators

order of growth, Order of Growth, Glossary

order of operations, Order of Operations, Glossary,

I’ve got a big hairy expression and it doesn’t do

what I expect.

os module, Filenames and Paths

other (parameter name), A More Complicated

Example

OverflowError, Debugging

overloading, Glossary

override, Optional Parameters, Glossary, The init

Method, Comparing Cards, Inheritance, Debugging

P

palindrome, Exercises, Exercises, Looping with

Indices, Exercises, Exercises

parameter, Parameters and Arguments, Variables

and Parameters Are Local, Glossary, List

Arguments

gather, Variable-Length Argument Tuples

optional, Optional Parameters, The init Method

other, A More Complicated Example

self, Printing Objects

parent class, Inheritance, Inheritance, Glossary

parentheses

argument in, Function Calls

empty, Adding New Functions, String Methods

parameters in, Parameters and Arguments,

Variables and Parameters Are Local

parent class in, Inheritance

tuples in, Tuples Are Immutable

parse, Formal and Natural Languages, Glossary

pass statement, Conditional Execution

path, Filenames and Paths, Glossary

absolute, Filenames and Paths

relative, Filenames and Paths

pattern

filter, Map, Filter and Reduce, Glossary, List

Comprehensions

guardian, Checking Types, Glossary, Debugging

map, Map, Filter and Reduce, Glossary

reduce, Map, Filter and Reduce, Glossary

search, Searching, Glossary, Search, Reverse

Lookup, any and all

swap, Tuple Assignment

pdb (Python debugger), When I run the program I

get an exception.

PEMDAS, Order of Operations

permission, file, Catching Exceptions

persistence, Persistence, Glossary

pi, Math Functions, Exercises

pickle module, Persistence, Pickling

pickling, Pickling

pie, Exercises

pipe, Pipes

pipe object, Glossary

plain text, Reading Word Lists, Word Frequency

Analysis

planned development, Prototyping versus Planning

poetry, Formal and Natural Languages

Point class, Programmer-Defined Types, The init

Method

point, mathematical, Programmer-Defined Types

poker, Inheritance, Exercises

polygon function, Exercises

polymorphism, Polymorphism, Glossary

pop method, Deleting Elements, Add, Remove,

Shuffle and Sort

popen function, Pipes

portability, Glossary

positional argument, Another Example, Glossary,

Gathering Keyword Args

postcondition, Debugging, Debugging, Debugging

pprint module, Debugging

precedence, I’ve got a big hairy expression and it

doesn’t do what I expect.

precondition, Debugging, Glossary, Glossary,

Debugging, Debugging

prefix, Markov Analysis

pretty print, Debugging

print function, The First Program

print statement, The First Program, Glossary, The

__str__ Method, I added so many print statements I

get inundated with output.

problem solving, The Way of the Program, Glossary

profile module, Data Structures

program, What Is a Program?, Glossary

program testing, Debugging

programmer-defined function, Parameters and

Arguments, Optional Parameters

programmer-defined type, Programmer-Defined

Types, Glossary, Time, Object-Oriented Features,

Operator Overloading, Comparing Cards

Project Gutenberg, Word Frequency Analysis

prompt, Running Python, Glossary, Keyboard Input

prose, Formal and Natural Languages

prototype and patch, Pure Functions, Prototyping

versus Planning, Glossary

pseudorandom, Random Numbers, Glossary

pure function, Pure Functions, Glossary

Puzzler, Exercises, Exercises, Exercises, Exercises,

Exercises

Pythagorean theorem, Incremental Development

Python 2, Running Python, The First Program,

Generalization, Floor Division and Modulus,

Keyboard Input

Python in a browser, Running Python

Python, running, Running Python

PythonAnywhere, Running Python

Q

quadratic, Glossary

quadratic growth, Order of Growth

quotation mark, The First Program, Values and

Types, docstring, String Slices, Syntax Errors

R

radd method, Type-Based Dispatch

radian, Math Functions

radix sort, Analysis of Algorithms

rage, I’m really, really stuck and I need help.

raise statement, Reverse Lookup, Glossary,

Debugging

Ramanujan, Srinivasa, Exercises

randint function, Exercises, Random Numbers

random function, Random Numbers

random module, Exercises, Random Numbers, Add,

Remove, Shuffle and Sort

random number, Random Numbers

random text, Markov Analysis

random walk programming, Debugging, I’m really,

really stuck and I need help.

rank, Card Objects

read method, Pipes

readline method, Reading Word Lists, Pipes

reassignment, Reassignment, Glossary, Lists Are

Mutable, Global Variables

Rectangle class, Rectangles

recursion, Recursion, Recursion, Glossary, More

Recursion, Leap of Faith

base case, Stack Diagrams for Recursive

Functions

infinite, Infinite Recursion, Checking Types,

Infinite recursion

recursive definition, More Recursion, Exercises

red-black tree, Hashtables

reduce pattern, Map, Filter and Reduce, Glossary

reducible word, Exercises, Exercises

reduction to a previously solved problem, Search,

Looping with Indices, Glossary

redundancy, Formal and Natural Languages

refactoring, Refactoring, Refactoring, Glossary,

Data Encapsulation

reference, Aliasing, List Arguments, Glossary

aliasing, Aliasing

rehashing, Hashtables

relational operator, Boolean Expressions,

Comparing Cards

relative path, Filenames and Paths, Glossary

reload function, Writing Modules, I keep making

changes and it makes no difference.

remove method, Deleting Elements

repetition, Simple Repetition

list, List Operations

replace method, Word Frequency Analysis

repr function, Debugging

representation, Programmer-Defined Types,

Rectangles, Card Objects

return statement, Recursion, Return Values, I’ve

got a function that doesn’t return what I expect.

return value, Function Calls, Glossary, Return

Values, Instances as Return Values

tuple, Tuples as Return Values

reverse lookup, Glossary

reverse lookup, dictionary, Reverse Lookup

reverse word pair, Exercises

reversed function, Sequences of Sequences

rotation, letter, Exercises, Exercises

rubber duck debugging, Glossary

running pace, Exercises, Exercises, Exercises

running Python, Running Python

runtime error, Debugging, Infinite Recursion,

Debugging, Debugging, When I run the program I

get an exception.

RuntimeError, Infinite Recursion, Checking Types

S

safe language, Debugging

sanity check, Debugging

scaffolding, Incremental Development, Glossary,

Debugging

scatter, Variable-Length Argument Tuples,

Glossary, Gathering Keyword Args

Schmidt, Eric, Analysis of Algorithms

Scrabble, Exercises

script, Script Mode, Glossary

script mode, Script Mode, Script Mode, Glossary,

Fruitful Functions and Void Functions

search, Reverse Lookup, Analysis of Search

Algorithms, Glossary

search pattern, Searching, Glossary, Search, any

and all

search, binary, Exercises

search, bisection, Exercises

self (parameter name), Printing Objects

semantic error, Debugging, Glossary, Debugging,

Semantic Errors

semantics, Glossary, Object-Oriented Features

sequence, Values and Types, Strings, A String Is a

Sequence, Glossary, A List Is a Sequence, Lists and

Strings, Tuples Are Immutable, Sequences of

Sequences

set, Dictionary Subtraction, Sets

anagram, Exercises, Exercises

set membership, Exercises

set subtraction, Sets

setdefault, defaultdict

setdefault method, Exercises

sexagesimal, Prototyping versus Planning

shallow copy, Copying, Glossary

shape, Glossary

shape error, Debugging

shell, Pipes, Glossary

shelve module, Pickling

shuffle function, Add, Remove, Shuffle and Sort

sine function, Math Functions

singleton, Dictionaries and Lists, Glossary, Tuples

Are Immutable

slice, Glossary

copy, String Slices, List Slices

list, List Slices

string, String Slices

tuple, Tuples Are Immutable

update, List Slices

slice operator, String Slices, Exercises, List Slices,

List Arguments, Tuples Are Immutable

sort method, List Methods, Debugging, Add,

Remove, Shuffle and Sort

sorted function, Looping and Dictionaries,

Sequences of Sequences

sorting, Analysis of Basic Python Operations,

Analysis of Basic Python Operations

special case, Debugging, Glossary, Modifiers

special value

False, Boolean Expressions

None, Fruitful Functions and Void Functions,

Glossary, Return Values, List Methods, Deleting

Elements

True, Boolean Expressions

spiral, Exercises

split method, Lists and Strings, Tuple Assignment

sqrt, Incremental Development

sqrt function, Math Functions

square root, Square Roots

squiggly bracket, A Dictionary Is a Mapping

stable sort, Analysis of Basic Python Operations

stack diagram, Stack Diagrams, Stack Diagrams,

Glossary, Exercises, Stack Diagrams for Recursive

Functions, More Recursion, Exercises, List

Arguments

state diagram, Assignment Statements, Glossary,

Reassignment, Debugging, Lists Are Mutable,

Objects and Values, Aliasing, Dictionaries and Lists,

Dictionaries and Tuples, Attributes, Rectangles,

Copying, Time, Class Attributes

statement, Expressions and Statements, Glossary

assert, Debugging, Glossary

assignment, Assignment Statements,

Reassignment

break, break

compound, Conditional Execution

conditional, Conditional Execution, Glossary,

Boolean Functions, Conditional Expressions

for, Simple Repetition, Traversal with a for Loop,

Traversing a List

global, Global Variables, Glossary

if, Conditional Execution

import, Glossary, Writing Modules

pass, Conditional Execution

print, The First Program, Glossary, The __str__

Method, I added so many print statements I get

inundated with output.

raise, Reverse Lookup, Glossary, Debugging

return, Recursion, Return Values, I’ve got a

function that doesn’t return what I expect.

try, Catching Exceptions, Debugging

while, The while Statement

step size, Exercises

StopIteration, Generator Expressions

str function, Function Calls

__str__ method, The __str__ Method, Printing the

Deck

string, Values and Types, Glossary, Lists and

Strings, Sequences of Sequences

accumulator, Printing the Deck

comparison, String Comparison

empty, Lists and Strings

immutable, Strings Are Immutable

method, String Methods

multiline, docstring, Syntax Errors

operation, String Operations

slice, String Slices

triple-quoted, docstring

string concatenation, Analysis of Basic Python

Operations

string method, Exercises

string methods, Analysis of Basic Python

Operations

string module, Word Frequency Analysis

string representation, Debugging, The __str__

Method

string type, Values and Types

strip method, Reading Word Lists, Word Frequency

Analysis

structshape module, Debugging

structure, Formal and Natural Languages

subject, Printing Objects, Glossary

subset, Sets

subtraction

dictionary, Dictionary Subtraction

with borrowing, Algorithms, Prototyping versus

Planning

suffix, Markov Analysis

suit, Card Objects

sum, Generator Expressions

sum function, Variable-Length Argument Tuples

superstitious debugging, I’m really, really stuck

and I need help.

swap pattern, Tuple Assignment

syntax, Formal and Natural Languages, Glossary,

Debugging, Object-Oriented Features, Syntax

Errors

syntax error, Debugging, Glossary, Debugging

SyntaxError, Composition

T

temporary variable, Return Values, Glossary, I’ve

got a big hairy expression and it doesn’t do what I

expect.

test case, minimal, I added so many print

statements I get inundated with output.

testing

and absence of bugs, Debugging

incremental development, Incremental

Development

is hard, Debugging

knowing the answer, Incremental Development

leap of faith, Leap of Faith

minimal test case, I added so many print

statements I get inundated with output.

text

plain, Reading Word Lists, Word Frequency

Analysis

random, Markov Analysis

text file, Glossary

Time class, Time

time module, Exercises

token, Formal and Natural Languages, Glossary

traceback, Stack Diagrams, Glossary, Infinite

Recursion, Debugging, Reverse Lookup, When I run

the program I get an exception.

translate method, Word Frequency Analysis

traversal, Traversal with a for Loop, Traversal with

a for Loop, Searching, Debugging, Glossary,

Search, Search, Map, Filter and Reduce, Glossary,

Dictionary as a Collection of Counters, Looping and

Dictionaries, Lists and Tuples, Lists and Tuples,

Word Histogram

dictionary, Dictionaries and Tuples, Debugging

list, Traversing a List

triangle, Exercises

trigonometric function, Math Functions

triple-quoted string, docstring

True special value, Boolean Expressions

try statement, Catching Exceptions, Debugging

tuple, Tuples Are Immutable, Tuples as Return

Values, Sequences of Sequences, Glossary

as key in dictionary, Dictionaries and Tuples, Data

Structures

assignment, Tuple Assignment

comparison, Tuples Are Immutable, Comparing

Cards

in brackets, Dictionaries and Tuples

singleton, Tuples Are Immutable

slice, Tuples Are Immutable

tuple assignment, Tuples as Return Values, Lists

and Tuples, Glossary

tuple function, Tuples Are Immutable

tuple methods, Analysis of Basic Python Operations

Turing complete language, More Recursion

Turing Thesis, More Recursion

Turing, Alan, More Recursion

turtle typewriter, Exercises

TurtleWorld, Exercises

type, Values and Types, Values and Types, Glossary

bool, Boolean Expressions

dict, A Dictionary Is a Mapping

file, Persistence

float, Values and Types

function, Adding New Functions

int, Values and Types

list, A List Is a Sequence

NoneType, Fruitful Functions and Void Functions

programmer-defined, Programmer-Defined Types,

Glossary, Time, Object-Oriented Features,

Operator Overloading, Comparing Cards

set, Dictionary Subtraction

str, Values and Types

tuple, Tuples Are Immutable

type checking, Checking Types

type conversion, Function Calls

type function, Debugging

type-based dispatch, Type-Based Dispatch,

Polymorphism, Glossary

TypeError, A String Is a Sequence, Strings Are

Immutable, Dictionaries and Lists, Tuples Are

Immutable, Variable-Length Argument Tuples,

Format Operator, Another Example, When I run the

program I get an exception.

typewriter, turtle, Exercises

typographical error, Debugging

U

UnboundLocalError, Global Variables

underscore character, Variable Names

uniqueness, Exercises

Unix command, ls, Pipes

update, Updating Variables, Square Roots, Glossary

database, Databases

global variable, Global Variables

histogram, Word Histogram

item, Traversing a List

slice, List Slices

update method, Dictionaries and Tuples

update operator, Map, Filter and Reduce

use before def, Definitions and Uses

V

value, Values and Types, Glossary, Objects and

Values, Objects and Values, Glossary

default, Optional Parameters

tuple, Tuples as Return Values

ValueError, Keyboard Input, Tuple Assignment

values method, A Dictionary Is a Mapping

variable, Variables, Expressions and Statements,

Variable Names, Glossary

global, Global Variables

local, Variables and Parameters Are Local

temporary, Return Values, Glossary, I’ve got a big

hairy expression and it doesn’t do what I expect.

updating, Updating Variables

variable-length argument tuple, Variable-Length

Argument Tuples

veneer, Add, Remove, Shuffle and Sort, Glossary

void function, Fruitful Functions and Void

Functions, Glossary

void method, List Methods

vorpal, More Recursion

W

walk, directory, Filenames and Paths

while loop, The while Statement

whitespace, Debugging, Exercises, Debugging,

Syntax Errors

word count, Writing Modules

word frequency, Word Frequency Analysis,

Exercises

word, reducible, Exercises, Exercises

working directory, Filenames and Paths

worst bug, Exercises

worst case, Analysis of Algorithms, Glossary

Z

zero, index starting at, A String Is a Sequence, Lists

Are Mutable

zip function, Lists and Tuples

use with dict, Dictionaries and Tuples

zip object, Glossary

Zipf’s law, Exercises

About the Author

Allen Downey is a Professor of Computer Science at Olin
College of Engineering. He has taught at Wellesley College,
Colby College and U.C. Berkeley. He has a PhD in
Computer Science from U.C. Berkeley and Master’s and
Bachelor’s degrees from MIT.

Colophon

The animal on the cover of Think Python is the Carolina
parrot, also known as the Carolina parakeet (Conuropsis

carolinensis). This parrot inhabited the southeastern
United States and was the only continental parrot with a
habitat north of Mexico. At one time, it lived as far north as
New York and the Great Lakes, although it was chiefly
found from Florida to the Carolinas.
The Carolina parrot was mainly green with a yellow head
and some orange coloring that appeared on the forehead
and cheeks at maturity. Its average size ranged from 31–33
cm. It had a loud, riotous call and would chatter constantly
while feeding. It inhabited tree hollows near swamps and
riverbanks. The Carolina parrot was a very gregarious
animal, living in small groups that could grow to several
hundred parrots when feeding.
These feeding areas were, unfortunately, often the crops of
farmers, who would shoot the birds to keep them away
from the harvest. The birds’ social nature caused them to
fly to the rescue of any wounded parrot, allowing farmers
to shoot down whole flocks at a time. In addition, their
feathers were used to embellish ladies’ hats, and some
parrots were kept as pets. A combination of these factors
led the Carolina parrot to become rare by the late 1800s,
and poultry disease may have contributed to their
dwindling numbers. By the 1920s, the species was extinct.
Today, there are more than 700 Carolina parrot specimens
preserved in museums worldwide.
Many of the animals on O’Reilly covers are endangered; all
of them are important to the world. To learn more about
how you can help, go to animals.oreilly.com.

http://animals.oreilly.com/

The cover image is from Johnson’s Natural History. The
cover fonts are URW Typewriter and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Preface
	The Strange History of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Contributor List

	1. The Way of the Program
	What Is a Program?
	Running Python
	The First Program
	Arithmetic Operators
	Values and Types
	Formal and Natural Languages
	Debugging
	Glossary
	Exercises

	2. Variables, Expressions and Statements
	Assignment Statements
	Variable Names
	Expressions and Statements
	Script Mode
	Order of Operations
	String Operations
	Comments
	Debugging
	Glossary
	Exercises

	3. Functions
	Function Calls
	Math Functions
	Composition
	Adding New Functions
	Definitions and Uses
	Flow of Execution
	Parameters and Arguments
	Variables and Parameters Are Local
	Stack Diagrams
	Fruitful Functions and Void Functions
	Why Functions?
	Debugging
	Glossary
	Exercises

	4. Case Study: Interface Design
	The turtle Module
	Simple Repetition
	Exercises
	Encapsulation
	Generalization
	Interface Design
	Refactoring
	A Development Plan
	docstring
	Debugging
	Glossary
	Exercises

	5. Conditionals and Recursion
	Floor Division and Modulus
	Boolean Expressions
	Logical Operators
	Conditional Execution
	Alternative Execution
	Chained Conditionals
	Nested Conditionals
	Recursion
	Stack Diagrams for Recursive Functions
	Infinite Recursion
	Keyboard Input
	Debugging
	Glossary
	Exercises

	6. Fruitful Functions
	Return Values
	Incremental Development
	Composition
	Boolean Functions
	More Recursion
	Leap of Faith
	One More Example
	Checking Types
	Debugging
	Glossary
	Exercises

	7. Iteration
	Reassignment
	Updating Variables
	The while Statement
	break
	Square Roots
	Algorithms
	Debugging
	Glossary
	Exercises

	8. Strings
	A String Is a Sequence
	len
	Traversal with a for Loop
	String Slices
	Strings Are Immutable
	Searching
	Looping and Counting
	String Methods
	The in Operator
	String Comparison
	Debugging
	Glossary
	Exercises

	9. Case Study: Word Play
	Reading Word Lists
	Exercises
	Search
	Looping with Indices
	Debugging
	Glossary
	Exercises

	10. Lists
	A List Is a Sequence
	Lists Are Mutable
	Traversing a List
	List Operations
	List Slices
	List Methods
	Map, Filter and Reduce
	Deleting Elements
	Lists and Strings
	Objects and Values
	Aliasing
	List Arguments
	Debugging
	Glossary
	Exercises

	11. Dictionaries
	A Dictionary Is a Mapping
	Dictionary as a Collection of Counters
	Looping and Dictionaries
	Reverse Lookup
	Dictionaries and Lists
	Memos
	Global Variables
	Debugging
	Glossary
	Exercises

	12. Tuples
	Tuples Are Immutable
	Tuple Assignment
	Tuples as Return Values
	Variable-Length Argument Tuples
	Lists and Tuples
	Dictionaries and Tuples
	Sequences of Sequences
	Debugging
	Glossary
	Exercises

	13. Case Study: Data Structure Selection
	Word Frequency Analysis
	Random Numbers
	Word Histogram
	Most Common Words
	Optional Parameters
	Dictionary Subtraction
	Random Words
	Markov Analysis
	Data Structures
	Debugging
	Glossary
	Exercises

	14. Files
	Persistence
	Reading and Writing
	Format Operator
	Filenames and Paths
	Catching Exceptions
	Databases
	Pickling
	Pipes
	Writing Modules
	Debugging
	Glossary
	Exercises

	15. Classes and Objects
	Programmer-Defined Types
	Attributes
	Rectangles
	Instances as Return Values
	Objects Are Mutable
	Copying
	Debugging
	Glossary
	Exercises

	16. Classes and Functions
	Time
	Pure Functions
	Modifiers
	Prototyping versus Planning
	Debugging
	Glossary
	Exercises

	17. Classes and Methods
	Object-Oriented Features
	Printing Objects
	Another Example
	A More Complicated Example
	The init Method
	The __str__ Method
	Operator Overloading
	Type-Based Dispatch
	Polymorphism
	Interface and Implementation
	Debugging
	Glossary
	Exercises

	18. Inheritance
	Card Objects
	Class Attributes
	Comparing Cards
	Decks
	Printing the Deck
	Add, Remove, Shuffle and Sort
	Inheritance
	Class Diagrams
	Data Encapsulation
	Debugging
	Glossary
	Exercises

	19. The Goodies
	Conditional Expressions
	List Comprehensions
	Generator Expressions
	any and all
	Sets
	Counters
	defaultdict
	Named Tuples
	Gathering Keyword Args
	Glossary
	Exercises

	20. Debugging
	Syntax Errors
	I keep making changes and it makes no difference.

	Runtime Errors
	My program does absolutely nothing.
	My program hangs.
	When I run the program I get an exception.
	I added so many print statements I get inundated with output.

	Semantic Errors
	My program doesn’t work.
	I’ve got a big hairy expression and it doesn’t do what I expect.
	I’ve got a function that doesn’t return what I expect.
	I’m really, really stuck and I need help.
	No, I really need help.

	21. Analysis of Algorithms
	Order of Growth
	Analysis of Basic Python Operations
	Analysis of Search Algorithms
	Hashtables
	Glossary

	Index

